EI / SCOPUS / CSCD 收录

中文核心期刊

LIU Yuechao, JIANG Genshan, YANG Yanfeng, KONG Qian. Motion characteristics of particles around the cylindrical tube in a standing wave sound field[J]. ACTA ACUSTICA, 2023, 48(2): 356-365. DOI: 10.15949/j.cnki.0371-0025.2023.02.008
Citation: LIU Yuechao, JIANG Genshan, YANG Yanfeng, KONG Qian. Motion characteristics of particles around the cylindrical tube in a standing wave sound field[J]. ACTA ACUSTICA, 2023, 48(2): 356-365. DOI: 10.15949/j.cnki.0371-0025.2023.02.008

Motion characteristics of particles around the cylindrical tube in a standing wave sound field

More Information
  • PACS: 
  • Received Date: December 14, 2021
  • Revised Date: February 24, 2022
  • Available Online: March 09, 2023
  • A calculation method combining the acoustic radiation force around the cylinder and the acoustic streaming Stokes force is proposed to calculate the motion of fluid and granular media outside a cylindrical tube. Using the acoustic streaming equation outside the cylinder, the external vortex is obtained as the main body of flow when Rem ≥ 325.27, where Rem is the dimensionless parameter that depends on the structure of the vortex. On this basis, the limit slip velocity of the acoustic streaming outside the tube is calculated by using Nyborg's boundary slip velocity theory, and the acoustic radiation force formula near the cylinder. The expression of particle critical diameter is derived when the particle velocity is zero and the acoustic radiation force and the acoustic streaming Stokes force are in equilibrium. The movement of particles outside the cylinder at different positions is simulated, and the results are consistent with the theoretical formula: the particles’ critical diameter is related to the acoustic frequency. When the particle diameter is less than the critical diameter, the Stokes force of the acoustic streaming is dominant, and the particles move with the acoustic streaming. When the particle diameter is greater than or equal to the critical diameter, the acoustic radiation force is dominant, and the particles gradually congregate at the node of the acoustic radiation force under the action of the acoustic radiation force. Theoretical and simulation results show that the proposed method can be used to examine the distribution of particles outside the tube, and the results are helpful to solve the problems of tube scaling and reduction of the heat exchange rate of heat exchangers and steam generators in power stations.

  • [1]
    Holtsmark J, Johnsen I, Sikkeland T, et al. Boundary layer flow near a cylindrical obstacle in an oscillating, incompressible fluid. J. Acoust. Soc. Am., 1954; 26(1): 26—39 DOI: 10.1121/1.1907285
    [2]
    Lighthill J. Acoustic streaming. J. Sound Vib., 1978; 61(3): 391—418 DOI: 10.1016/0022-460X(78)90388-7
    [3]
    Haddon E W, Riley N. The steady streaming induced between oscillating circular cylinders. Q. J. Mech. Appl. Math., 1979; 32(3): 265—282 DOI: 10.1093/qjmam/32.3.265
    [4]
    Lee C P, Wang T G. Outer acoustic streaming. J. Acoust. Soc. Am., 1990; 88(5): 2367—2375 DOI: 10.1121/1.400079
    [5]
    Hamilton M F, Ilinskii Y A, Zabolotskaya E A. Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width. J. Acoust. Soc. Am., 2003; 113(1): 153—160 DOI: 10.1121/1.1528928
    [6]
    Yang Y F, Jiang G S, Jiang Y, et al. Numerical simulation of acoustic streaming distribution outside spherical particles under the action of sound waves. Chinese Journal of Acoustics, 2021; 40(3): 401—418 DOI: 10.15949/j.cnki.0217-9776.2021.03.007
    [7]
    Jiang G S, Tian J, Li X D. Theoretical analysis for sound wave scattering by parallel cylindrical tubes in boilers. Chinese Journal of Acoustics, 2000; 19(2): 105—113 DOI: 10.15949/j.cnki.0217-9776.2000.02.002
    [8]
    Nyborg W L. Acoustic streaming near a boundary. J. Acoust. Soc. Am., 1958; 30(4): 329—339 DOI: 10.1121/1.1909587
    [9]
    Muller P B, Barnkob R, Jensen M J H, et al. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip, 2012; 12(22): 4617—4627 DOI: 10.1039/C2LC40612H
    [10]
    Lei J, Cheng F, Li K. Numerical simulation of boundary-driven acoustic streaming in microfluidic channels with circular cross-sections. Micromachines-Basel, 2020; 11(3): 240 DOI: 10.3390/mi11030240
    [11]
    Lei J, Glynne-Jones P, Hill M. Comparing methods for the modelling of boundary-driven streaming in acoustofluidic devices. Microfluid. Nanofluid., 2017; 21(2): 23 DOI: 10.1007/s10404-017-1865-z
    [12]
    Cherntongchai P, Chaiwattana S, Leruk R, et al. Influence of standing wave characteristics on hydrodynamic behaviours in sound-assisted fluidization of Geldart group a powder. Powder Technol., 2019; 350: 123—133 DOI: 10.1016/j.powtec.2019.01.031
    [13]
    King L V. On the acoustic radiation pressure on spheres. Proc. R. Soc. Lond. A, 1934; 147(861): 212—240 DOI: 10.1098/rspa.1934.0215
    [14]
    Maxey M R, Riley J J. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids, 1983; 26(4): 883—889 DOI: 10.1063/1.864230
    [15]
    Cleckler J, Elghobashi S, Liu F. On the motion of inertial particles by sound waves. Phys. Fluids, 2012; 24(3): 033301 DOI: 10.1063/1.3696243
    [16]
    Fan F, Yang X, Kim C N. Direct simulation of inhalable particle motion and collision in a standing wave field. J. Mech. Sci. Technol., 2013; 27(6): 1707—1712 DOI: 10.1007/s12206-013-0420-4
    [17]
    Zhou D, Luo Z, Fang M, et al. Numerical calculation of particle movement in sound wave fields and experimental verification through high-speed photography. Appl. Energ., 2017; 185: 2245—2250 DOI: 10.1016/j.apenergy.2016.02.006
    [18]
    Zhou D, Luo Z, Fang M, et al. Numerical study of the movement of fine particle in sound wave field. Energy Procedia, 2015; 75: 2415—2420 DOI: 10.1016/j.egypro.2015.07.198
    [19]
    杨延锋, 姜根山, 于淼. 强声波作用下煤粉颗粒的振荡特性研究. 动力工程学报, 2021; 41(4): 263—271 DOI: 10.19805/j.cnki.jcspe.2021.04.002
    [20]
    许伟龙, 姜根山, 安连锁, 等. 强声波作用下烟气夹带单颗粒煤粉传热特性的数值研究. 动力工程学报, 2017; 37(10): 788—795 DOI: 10.3969/j.issn.1674-7607.2017.10.003
    [21]
    Xu W, Jiang G, An L, et al. Numerical and experimental study of acoustically enhanced heat transfer from a single particle in flue gas. Combust. Sci. Technol., 2018; 190(7): 1158—1177 DOI: 10.1080/00102202.2018.1437725
    [22]
    Jiang G, Yang Y, Liu Y, et al. Acoustic streaming outside spherical particles and parameter analysis of heat transfer enhancement. Eur. J. Mech. B. Fluid, 2021; 86: 1—14 DOI: 10.1016/j.euromechflu.2020.11.005
    [23]
    Jiang G, Yang Y, Xu W, et al. Convective heat exchange characteristics of acoustic-induced flows over a sphere: The role of acoustic streaming. Appl. Acoust., 2021; 177: 107915 DOI: 10.1016/j.apacoust.2021.107915
    [24]
    杨延锋, 姜根山, 刘月超, 等. 声流曳力和声辐射力协同作用下颗粒运动的数值模拟. 动力工程学报, 2020; 40(12): 995—1001 DOI: 10.19805/j.cnki.jcspe.2020.12.007
    [25]
    程建春. 声学原理. 北京: 科学出版社, 2019
    [26]
    Barnkob R, Augustsson P, Laurell T, et al. Acoustic radiation and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. Phys. Rev. E, 2012; 86: 056307 DOI: 10.1103/PhysRevE.86.056307
    [27]
    Bruus H. Acoustofluidics 7: The acoustic radiation force on small particles. Lab Chip, 2012; 12(6): 1014—1021 DOI: 10.1039/C2LC21068A

Catalog

    Article Metrics

    Article views (186) PDF downloads (11) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return