EI / SCOPUS / CSCD 收录

中文核心期刊

XIONG Wenting, ZHU Wujun, XIANG Yanxun, DENG Mingxi, XUAN Fuzhen. Detection of bonding strength of metal matrix composite structure using nonlinear ultrasonic mixing method[J]. ACTA ACUSTICA, 2023, 48(1): 148-153. DOI: 10.15949/j.cnki.0371-0025.2023.01.012
Citation: XIONG Wenting, ZHU Wujun, XIANG Yanxun, DENG Mingxi, XUAN Fuzhen. Detection of bonding strength of metal matrix composite structure using nonlinear ultrasonic mixing method[J]. ACTA ACUSTICA, 2023, 48(1): 148-153. DOI: 10.15949/j.cnki.0371-0025.2023.01.012

Detection of bonding strength of metal matrix composite structure using nonlinear ultrasonic mixing method

More Information
  • Received Date: February 12, 2022
  • Revised Date: June 14, 2022
  • Available Online: January 17, 2023
  • The nonlinear ultrasonic mixing method was used to detect the bonding strength of metal matrix composite structure. Based on the resonance conditions and the curing mechanism, experiments were conducted for detecting the aluminum alloy-acrylate bonding structures with different curing agent content. A pair of shear waves was chose as the primary waves to measure the nonlinear mixing parameters under different fundamental cycle. In order to analyze the relationship between bonding strength and nonlinear mixing parameters, the bonding strength of specimens were calibrated by tensile test, and tensile sections of specimens were investigated by SEM. The results demonstrated that nonlinear parameters decrease with the increase of bonding strength under different fundamental cycle. It shows that the nonlinear ultrasonic mixing method is sensitive to bonding strength of the metal matrix composite structure. Therefore, the nonlinear ultrasonic mixing method can be applied to characterize the deterioration of bonding strength of similar structure.
  • [1]
    Yu S, Min N T, Critchlow G. Use of carbon nanotubes reinforced epoxy as adhesives to join aluminum plates. Mater. Des., 2010; 31(supp-S1):S126-S129
    [2]
    Piekarczyk M, Grec R. Application of adhesive bonding in steel and aluminium structures. Arch. Civil Eng., 2012; 58(3):309-329
    [3]
    Lassmann M, Hanscheid H, Schelper L F et al. Measurement of incorporation in family members of radioiodine therapy patients after therapy of benign thyroid diseases. Nuklearmedizin, 1998; 37(3):120
    [4]
    Nagy P B. Ultrasonic detection of kissing bonds at adhesive interfaces. J. Adhes. Sci. Technol., 1991; 5(8):619-630
    [5]
    Jiao D, Rose J L. An ultrasonic interface layer model for bond evaluation. J. Adhes. Sci. Technol., 1991; 5(8):631-646
    [6]
    Rokhlin S I, Wang L, Xie B et al. Modulated angle beam ultrasonic spectroscopy for evaluation of imperfect interfaces and adhesive bonds. Ultrasonics, 2004; 42(1-9):1037-1047
    [7]
    Jeenjitkaew C, Guild F J. The analysis of kissing bonds in adhesive joints. Int. J. Adhes. Adhes., 2017; 75:101-107
    [8]
    Rokhlin S I. Analysis of boundary conditions for elastic wave interaction with an interface between two solids. J. Acoust. Soc. Am., 1991; 89(2):503
    [9]
    税国双, 汪越胜, 曲建民. 材料力学性能退化的超声无损检测与评价. 力学进展, 2005; 35(1):52-68
    [10]
    Yan D, Drinkwater B W, Neild S A. Measurement of the ultrasonic nonlinearity of kissing bonds in adhesive joints. NDT E Int., 2009; 42(5):459-466
    [11]
    Liu G, Qu J, Jacobs L J. Effects of cure state on the ultrasonic nonlinear parameter in adhesive joints. ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida, USA, 2000
    [12]
    Shui G, Song X, Xi J et al. Experimental characterization of impact fatigue damage in an adhesive bonding using the second harmonics. J. Nondestruct. Eval., 2017; 36(2):23
    [13]
    安志武, 王小民, 毛捷, 李永安, 李明轩. 粘接件拉伸强度的超声检测实验研究. 声学学报, 2011; 36(4):384-388
    [14]
    刘斯明, 彭地, 赵翰学等. SiC颗粒增强铝基复合材料非共线非线性响应试验观察. 机械工程学报, 2012; 48(22):21-26
    [15]
    Croxford A J, Wilcox P D, Drinkwater B W. The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J. Acoust. Soc. Am., 2009; 126(5):EL117-EL122
    [16]
    Jiao J, Sun J, Li G et al. Evaluation of the intergranular corrosion in austenitic stainless steel using collinear wave mixing method. NDT E Int., 2015; 69:1-8
    [17]
    焦敬品, 孙俊俊, 吴斌, 何存富. 结构微裂纹混频非线性超声检测方法研究. 声学学报, 2013; 38(6):648-656
    [18]
    焦敬品, 樊仲祥, 吴斌, 何存富. 闭合裂纹非共线混频超声检测实验研究. 声学学报, 2017; 42(2):205-213
    [19]
    Jiao J, Sun J, Li N et al. Micro-crack detection using a collinear wave mixing technique. NDT E Int., 2014; 62:122-129
    [20]
    Ju T, Achenbach J D, Jacobs L J et al. Nondestructive evaluation of thermal aging of adhesive joints by using a nonlinear wave mixing technique. NDT E Int., 2019; 103:62-67
    [21]
    Jones G L, Kobett D R. Interaction of elastic waves in an isotropic solid. J. Acoust. Soc. Am., 1963; 35:5-10
    [22]
    Awaja F, Gilbert M, Kelly G et al. Adhesion of polymers. Prog. Polym. Sci., 2009; 34(9):948-968
    [23]
    Kajtna J, Alič B, Krajnc M et al. Influence of hydrogen bond on rheological properties of solventless UV crosslinkable pressure sensitive acrylic adhesive prepolymers. Int. J. Adhes. Adhes., 2014; 49:103-108
    [24]
    王汉卿, 成立, 廖瑞金等. 复合绝缘子交界面非线性力学模型及弱粘接缺陷无损检测方法. 中国电机工程学报, 2019; 39(3):895-905
    [25]
    邓明晰. 分层结构中兰姆波二次谐波发生的模式展开分析. 声学学报, 2005; 30(2):132-142
    [26]
    邓明晰, 安志武, 李明轩. 纵波垂直入射条件下粘接界面的非线性弹簧模型. 全国物理声学会议论文集, 2009:29-30
  • Related Articles

    [1]LI Chenyu, ZHU Wujun, XIANG Yanxun. Excitation efficiency and mode selection of ultrasonic Lamb wave mixing[J]. ACTA ACUSTICA, 2023, 48(6): 1199-1207. DOI: 10.12395/0371-0025.2022063
    [2]LU Xiao, WEN Zhoubin, LI Junbao. Nonlinearities and distortion model of a balanced armature receiver[J]. ACTA ACUSTICA, 2023, 48(2): 395-405. DOI: 10.15949/j.cnki.0371-0025.2023.02.011
    [3]JIAO Jingpin, LI Li, GAO Xiang, WU Bin, HE Cunfu. Fatigue detection in metal plate using nonlinear Lamb wave mixing method[J]. ACTA ACUSTICA, 2022, 47(2): 256-265. DOI: 10.15949/j.cnki.0371-0025.2022.02.010
    [4]YIN Xin, ZHU Wujun, SUN Maoxun, XIANG Yanxun, DENG Mingxi, XUAN Fuzhen. Localization of the plasticity at crack tips using the non-collinear wave mixing[J]. ACTA ACUSTICA, 2021, 46(3): 463-470. DOI: 10.15949/j.cnki.0371-0025.2021.03.018
    [5]QIAN Zuwen. High-order nonlinear coefficients in isotropic solid media[J]. ACTA ACUSTICA, 2021, 46(1): 130-134. DOI: 10.15949/j.cnki.0371-0025.2021.01.013
    [6]NIU Xiaochuan, ZHU Liqiang, YU Zujun, LI Guozhi. Effects of temperature on nonlinear ultrasonic testing of stress in continuously welded rails[J]. ACTA ACUSTICA, 2019, 44(2): 241-250. DOI: 10.15949/j.cnki.0371-0025.2019.02.011
    [7]JIAO Jingpin, LÜ Hongtao, MENG Xiangji, WU Bin, HE Cunfu. Identification of nonlinear ultrasonic effects using method of dynamic wavelet fingerprint[J]. ACTA ACUSTICA, 2017, 42(5): 560-570. DOI: 10.15949/j.cnki.0371-0025.2017.05.006
    [8]ZHANG Rongfan, LI Xiongbing, ZHANG Shuzeng, ZHENG Huifeng. Research on nonlinear acoustic attenuation coefficients of material based on second harmonic measurement[J]. ACTA ACUSTICA, 2017, 42(2): 223-229. DOI: 10.15949/j.cnki.0371-0025.2017.02.011
    [9]JIAO Jingpin, FAN Zhongxiang, WU Bin, HE Cunfu. Experiments of non-collinear mixed frequency ultrasonic for closed crack detection[J]. ACTA ACUSTICA, 2017, 42(2): 205-213. DOI: 10.15949/j.cnki.0371-0025.2017.02.009
    [10]LIU Suzhen, LI Li, CAI Zhichao, ZHANG Chuang, JIN Liang. Evaluation of the tensile deformation of aluminum alloy using EMAT for nonlinear ultrasonic detection[J]. ACTA ACUSTICA, 2017, 42(1): 60-66. DOI: 10.15949/j.cnki.0371-0025.2017.01.008
  • Cited by

    Periodical cited type(1)

    1. 刘东利. 铝合金机械装备表面专用的改性环氧树脂胶粘剂性能研究. 粘接. 2023(11): 26-29 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (201) PDF downloads (29) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return