EI / SCOPUS / CSCD 收录

中文核心期刊

XING Chuanxi, WAN Zhiliang, JIANG Siyuan, YU Ruimeng. Direction of arrival estimation based on high-order cumulant by sparse reconstruction of underwater acoustic signals[J]. ACTA ACUSTICA, 2022, 47(4): 440-450. DOI: 10.15949/j.cnki.0371-0025.2022.04.010
Citation: XING Chuanxi, WAN Zhiliang, JIANG Siyuan, YU Ruimeng. Direction of arrival estimation based on high-order cumulant by sparse reconstruction of underwater acoustic signals[J]. ACTA ACUSTICA, 2022, 47(4): 440-450. DOI: 10.15949/j.cnki.0371-0025.2022.04.010

Direction of arrival estimation based on high-order cumulant by sparse reconstruction of underwater acoustic signals

More Information
  • PACS: 
    • 43.30  (Underwater sound)
    • 43.60  (Acoustic signal processing)
  • Received Date: November 30, 2021
  • Revised Date: January 09, 2022
  • Available Online: July 07, 2022
  • Published Date: July 14, 2022
  • The high-order cumulant has the characteristics of Gaussian noise suppression and array elements expansion,introduced it into the Direction Of Arrival(DOA) estimation of the underwater acoustic signals,an algorithm of DOA estimation based on high-order cumulant by off-grid sparse Bayesian learning reconstruction is proposed.This method uses the natural blindness of the high-order cumulant to Gaussian noise,and calculates the fourth-order cumulant of the array signal to filter out the Gaussian noise,then the array elements doubles the original structure.The selection matrix is constructed to eliminate the redundant items in the fourth-order cumulant,the array elements can be expanded again,and the new observation model obtained has better statistical performance.Then,using the sparsity of the spatial domain,the off-grid sparse representation model under the fourth-order cumulant is derived,the maximum posterior probability of the source signal is calculated by Bayesian learning,and the target azimuth estimation is realized.Numerical simulation and sea measured data show that,this method can achieve a resolution probability of more than 95% when the azimuth interval between adjacent sound sources is 40,the root mean square error of the target azimuth estimation is within 1° when the signal-to-noise ratio is greater than-5 dB.This method can significantly suppress background noise interference,it can accurately and robustly estimate the azimuth of the underwater acoustic target even under the condition of densely distributed multiple sound sources.
  • Related Articles

    [1]LI Chenmu, QIU Longhao, WANG Jinjin, LIANG Guolong, SHEN Tongsheng. A sparse Bayesian learning based off-grid localization algorithm for mixed far-field and near-field sources[J]. ACTA ACUSTICA, 2025, 50(2): 456-474. DOI: 10.12395/0371-0025.2023214
    [2]LI Xionghui, LIANG Guolong, SHEN Tongsheng, LUO Zailei. Improved sparse Bayesian learning direction estimation algorithm for single vector hydrophones[J]. ACTA ACUSTICA, 2025, 50(1): 77-85. DOI: 10.12395/0371-0025.2023121
    [3]GE Wei, JIAO Huakun, TONG Wentao, SHENG Xueli, HAN Xiao. Variational Bayesian inference-based joint estimation method for underwater acoustic OFDM under impulsive interference[J]. ACTA ACUSTICA, 2024, 49(5): 1051-1060. DOI: 10.12395/0371-0025.2023097
    [4]ZHANG Hao, ZHEN Dong, LIU Yinghui, FENG Guojin, ZHANG Hao. Fourth-order cumulant multiple matrix reconstruction to estimate direction of arrival for coherent sound source under low signal-to-noise ratio[J]. ACTA ACUSTICA, 2023, 48(2): 337-346. DOI: 10.15949/j.cnki.0371-0025.2023.02.004
    [5]HONG Danyang, WANG Wei, YIN Li, PU Zhanqing, ZHOU Chengyang, HUANG Haining. An improved temporal multiple sparse Bayesian learning under-ice acoustic channel estimation method[J]. ACTA ACUSTICA, 2022, 47(5): 591-602. DOI: 10.15949/j.cnki.0371-0025.2022.05.013
    [6]WANG Yan, ZHAO Lei, HAO Yu, QIU Longhao, LIANG Guolong. Sparse Bayesian learning for direction-of-arrival estimation with a turning observation platform[J]. ACTA ACUSTICA, 2022, 47(4): 432-439. DOI: 10.15949/j.cnki.0371-0025.2022.04.003
    [7]YIN Jingwei, GAO Xinbo, HAN Xiao, ZHANG Xiao, WANG Dayu, ZHANG Jincan. Underwater acoustic channel estimation and impulsive noise mitigation based on sparse Bayesian learning[J]. ACTA ACUSTICA, 2021, 46(6): 813-824. DOI: 10.15949/j.cnki.0371-0025.2021.06.004
    [8]GUO Qichao, LI Fenghua, PENG Chaohui, NIU Haiqiang, YANG Xishan. Blind estimation of underwater acoustic multipath channel using sparse Bayesian learning[J]. ACTA ACUSTICA, 2021, 46(6): 789-799. DOI: 10.15949/j.cnki.0371-0025.2021.06.002
    [9]QIU Longhao, LIANG Guolong, WANG Yan, WANG Jinjin. Mixed near-field and far-field sources localization method using sparse Bayesian learning[J]. ACTA ACUSTICA, 2018, 43(1): 1-11. DOI: 10.15949/j.cnki.0371-0025.2018.01.001
    [10]WANG Biao, ZHU Zhihui, DAI Yuewei. A fast underwater acoustic target direction of arrival estimation method based on sparse Bayesian learning[J]. ACTA ACUSTICA, 2016, 41(1): 81-86. DOI: 10.15949/j.cnki.0371-0025.2016.01.010
  • Cited by

    Periodical cited type(3)

    1. 单泽彪,徐恩达,张旭,刘小松. 基于高阶累积量ESPRIT算法的指数衰减正弦信号参数估计. 电子测量与仪器学报. 2024(01): 187-194 .
    2. 徐朋豪,杨文超,王友乾,熊抒豪. 基于高阶累积量的不规则阵列内插变换波达方向估计算法. 广州航海学院学报. 2024(01): 55-61 .
    3. 董赛蒙,邢传玺,魏光春,崔晶. 多目标水声信号的稀疏重构反卷积测向算法. 声学技术. 2024(05): 636-646 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (206) PDF downloads (63) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return