EI / SCOPUS / CSCD 收录

中文核心期刊

GU Yiming, LI Zhenglin, GONG Zaixiao, YU Yanxin, ZHANG Renhe, LI Fenghua. Experimental verification of bistatic active detection and propagation speed correction in shallow water with negative thermocline[J]. ACTA ACUSTICA, 2019, 44(4): 429-441. DOI: 10.15949/j.cnki.0371-0025.2019.04.004
Citation: GU Yiming, LI Zhenglin, GONG Zaixiao, YU Yanxin, ZHANG Renhe, LI Fenghua. Experimental verification of bistatic active detection and propagation speed correction in shallow water with negative thermocline[J]. ACTA ACUSTICA, 2019, 44(4): 429-441. DOI: 10.15949/j.cnki.0371-0025.2019.04.004

Experimental verification of bistatic active detection and propagation speed correction in shallow water with negative thermocline

More Information
  • PACS: 
  • Received Date: January 22, 2019
  • Revised Date: June 10, 2019
  • Available Online: June 27, 2022
  • In order to estimate the capability of bistatic active detection based on a stationary horizontal array and flexible source in shallow water environment,a bistatic active signal simulator is developed.Further,the transmission losses and energy spreading losses are analyzed and the capability of bistatic active detection in shallow water environment is estimated.An experiment was conducted in the South China Sea according to the predicted detection range.The bias between the selected reference sound velocity and the pulse propagation velocity of the target echo degrades the positioning accuracy.An approximate method for the pulse velocity estimation is proposed to reduce the positioning error caused by the bias.Experimental results show that bistatic active detection can effectively detect target in negative thermocline environment,the estimated SNR(Signal-to-Noise Ratio) with the simulator are reliable,and the positioning accuracy can be improved by using estimated pulse velocity.
  • Related Articles

    [1]LYU Jiahui, LUO Zailei, SHEN Tongsheng. Target localization for deep-sea vertical line array in the direct-arrival zone using deconvolution method[J]. ACTA ACUSTICA, 2024, 49(4): 636-646. DOI: 10.12395/0371-0025.2023056
    [2]MEI Xiaohan, ZHANG Bo, PENG Zhaohui, YU Xiaotao, ZHAI Duo. Frequency-shift compensation localization method for large aperture horizontal array in shallow water[J]. ACTA ACUSTICA, 2023, 48(5): 901-910. DOI: 10.12395/0371-0025.2022032
    [3]GUO Xiaowei, ZHENG Guangying, YAN Qi. Matched phase processing for active target depth estimation in shallow water[J]. ACTA ACUSTICA, 2022, 47(6): 800-809. DOI: 10.15949/j.cnki.0371-0025.2022.06.011
    [4]LI Qinglong, SONG Wenhua, GAO Dazhi, CHI Jing, GAO Deyang. Passive localization of shallow sea targets using interferogram[J]. ACTA ACUSTICA, 2022, 47(5): 625-633. DOI: 10.15949/j.cnki.0371-0025.2022.05.012
    [5]GU Yiming, GONG Zaixiao, CHEN Yanli, LI Zhenglin. Direct blast cancelling of the frequency modulation signals for bistatic active sonar in shallow water[J]. ACTA ACUSTICA, 2022, 47(2): 187-197. DOI: 10.15949/j.cnki.0371-0025.2022.02.002
    [6]TANG Hao, XU Feng, YANG Juan. Small target localization in shallow water based on forward scattering using the pressure sensitivity kernel for perturbed eigenrays[J]. ACTA ACUSTICA, 2019, 44(4): 576-584. DOI: 10.15949/j.cnki.0371-0025.2019.04.018
    [7]NAN De, LI Chaohui. High-precision acoustic localization of underwater target for mobile platform using ultra-short baseline array[J]. ACTA ACUSTICA, 2019, 44(4): 534-544. DOI: 10.15949/j.cnki.0371-0025.2019.04.014
    [8]XU Peng, GUO Lianghao, YAN Chao, ZHOU Mingyang. Target motion analysis method using bearing and radial velocity in shallow water[J]. ACTA ACUSTICA, 2018, 53(3): 323-333. DOI: 10.15949/j.cnki.0371-0025.2018.03.007
    [9]YAN Sheng, HAO Chengpeng, MA Hui, YAN Shefeng. Target localization and parameters estimation by sonar system with explosions as underwater sound sources[J]. ACTA ACUSTICA, 2018, 43(2): 169-177. DOI: 10.15949/j.cnki.0371-0025.2018.02.006
    [10]YAO Meijuan, REN Qunyan, MA Li. Target localization using virtual receiver technique with incomplete receiver array[J]. ACTA ACUSTICA, 2018, 43(1): 23-30. DOI: 10.15949/j.cnki.0371-0025.2018.01.003
  • Cited by

    Periodical cited type(6)

    1. 邓威,樊青青,李俊红,马军,孔超. MEMS压电矢量水听器低噪声前置放大电路. 压电与声光. 2024(04): 550-554 .
    2. 李智,杨士莪. 水声矢量传感器研究进展与挑战. 仪器仪表学报. 2024(11): 1-19 .
    3. 肖屹立,郭世旭. 带前放压电水听器噪声建模及低噪声设计方法. 压电与声光. 2023(02): 264-270 .
    4. 马鑫,洪连进,吴鸿博. 一种小尺寸惯性式矢量水听器的振速放大结构设计. 中国惯性技术学报. 2021(03): 381-386 .
    5. 郭世旭,朱锰琪,田皓文,赵鹏,王月兵. 针对压电式加速度计的低噪声数据采集系统设计. 仪表技术与传感器. 2020(07): 57-61 .
    6. 周宏坤,洪连进,程启航. 一种基于双压电晶片的低噪声加速度计. 中国惯性技术学报. 2020(04): 469-473 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (108) PDF downloads (32) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return