EI / SCOPUS / CSCD 收录

中文核心期刊

CHENG Yusheng, ZHANG Baohua, GAO Xin, ZHOU Jing. Phase-coupling characteristics of ship radiated-noise demodulation spectrum and application[J]. ACTA ACUSTICA, 2012, 37(1): 25-29. DOI: 10.15949/j.cnki.0371-0025.2012.01.004
Citation: CHENG Yusheng, ZHANG Baohua, GAO Xin, ZHOU Jing. Phase-coupling characteristics of ship radiated-noise demodulation spectrum and application[J]. ACTA ACUSTICA, 2012, 37(1): 25-29. DOI: 10.15949/j.cnki.0371-0025.2012.01.004

Phase-coupling characteristics of ship radiated-noise demodulation spectrum and application

More Information
  • PACS: 
  • Received Date: August 24, 2010
  • Revised Date: June 20, 2011
  • Available Online: June 22, 2022
  • Phase characteristics of ship radiated-noise demodulation spectrum harmonic components are considered. By analyzing a large number of ship radiated noise data,it is found that the sum phase of line spectrum at shaft frequency and its some harmonic subtracts the phase of blade frequency line spectrum is zero or other constant in the demodulation spectrum,which is called phase coupling.Higher-order cumulant of the harmonic signal with phase coupling relationship is given,and higher-order spectrum of the harmonic signal is simulated.The application of phase coupling relationship is studied.According to the higher-order spectral analysis of some weak modulated ship radiated noise,it is indicated that using the phase coupling relationship can improve the ability to extract propeller parameter,especially for weak modulated ship radiated noise.
  • Related Articles

    [1]CHEN Jiahao, LIN Jianheng, SUN Junping, JIANG Pengfei, YI Xuejuan, SHAN Yuanchun, LI Na, GUO Shengming. Demodulation line spectrum of ship radiated noise enhancement using blind deconvolution and chaotic oscillator[J]. ACTA ACUSTICA, 2024, 49(1): 104-116. DOI: 10.12395/0371-0025.2022155
    [2]LI Xuegang, JIANG Guoqing, SUN Guocang, HUA Runan, ZHU Jie. Radiated noise measurement method of underwater low noise target by a vertical nested array[J]. ACTA ACUSTICA, 2023, 48(5): 971-977. DOI: 10.12395/0371-0025.2022187
    [3]ZHANG Di, ZHOU Shihong, QI Yubo, DU Shuyuan. The accompanying modulation feature of ship-radiating line spectrums due to the dynamic fluctuating ocean surface[J]. ACTA ACUSTICA, 2022, 47(5): 603-611. DOI: 10.15949/j.cnki.0371-0025.2022.05.010
    [4]YI Zixu, MO Xiping, CHAI Yong, LIU Yongping, ZHANG Yunqiang, CUI Bin. The weakradiation coupling and bandwidth characteristics of Janus-Helmholtz transducer[J]. ACTA ACUSTICA, 2022, 47(1): 69-75. DOI: 10.15949/j.cnki.0371-0025.2022.01.008
    [5]CHENG Yusheng, MA Kai, QIU Jiaxing, CHE Yonggang, LI Haitao. Model of radiated noise modulation spectrum of ships with skewed propellers[J]. ACTA ACUSTICA, 2022, 47(1): 27-35. DOI: 10.15949/j.cnki.0371-0025.2022.01.003
    [6]CHEN Zhiyong, YANG Yanming, WEN Hongtao, WANG Yuwei, XU Dewei. Effect and mitigation method of the sea surface interference on the underwater ship radiated noise measurement[J]. ACTA ACUSTICA, 2019, 44(5): 897-904. DOI: 10.15949/j.cnki.0371-0025.2019.05.010
    [7]CHENG Yusheng, WANG Sen, DING Chao, LIU Qijun. The Influence of demodulation bandwidth on modulation spectrum of ship-radiated noise[J]. ACTA ACUSTICA, 2018, 43(6): 925-933. DOI: 10.15949/j.cnki.0371-0025.2018.06.007
    [8]LI Yanfei, SHEN Huijie, ZHANG Linke, SU Yongsheng. Sound propagation characteristics of a metamaterials-type periodic pipe and its low-frequency broadband control[J]. ACTA ACUSTICA, 2017, 42(3): 334-340. DOI: 10.15949/j.cnki.0371-0025.2017.03.010
    [9]LIU Jia, YANG Shie, PO Shengchun, HUANG Yiwang. Blind source separation of ship-radiated noise using single observing channel[J]. ACTA ACUSTICA, 2011, 36(3): 265-270. DOI: 10.15949/j.cnki.0371-0025.2011.03.013
    [10]ZHANG Xinhua, ZHANG Xiaoming, LIN Liangji. Researches on Chaotic Phenomena of Noises Radiated from Ships[J]. ACTA ACUSTICA, 1998, 23(2): 134-140. DOI: 10.15949/j.cnki.0371-0025.1998.02.005
  • Cited by

    Periodical cited type(16)

    1. 翟肇锴,李风华,张波,翟铎,胡传兴. 深海海底水平阵直达声区宽带声源干涉结构匹配定位. 声学学报. 2025(02): 433-444 . 本站查看
    2. 刘与涵,郭良浩,董阁,章伟裕,徐嘉璘,徐鹏,刘建军,任岁玲,屈嵩岳. 深海移动水平阵声源被动定位方法研究进展. 应用声学. 2025(01): 36-54 .
    3. 刘与涵,郭良浩,章伟裕,闫超,董阁. 深海声影区时频谱干涉结构与声源定位. 应用声学. 2024(01): 12-23 .
    4. 谢其宸,迟骋,张博,黄海宁. 利用海底反射时延结构的深海海底反射区目标距离深度估计方法. 声学学报. 2024(04): 627-635 . 本站查看
    5. XIE Qichen,CHI Cheng,ZHANG Bo,HUANG Haining. A range and depth estimation method using the time delay structure of bottom reflection in deep sea bottom bounce area. Chinese Journal of Acoustics. 2024(03): 275-289 .
    6. 陈永强,王慧源. 基于聚焦法的深海第一影区声源干涉结构应用研究. 声学与电子工程. 2024(04): 5-10 .
    7. 徐嘉璘,郭良浩,闫超. 利用深海海底声反射区频域干涉结构的声源深度估计方法. 声学学报. 2023(03): 425-436 . 本站查看
    8. 吴禹沈,秦继兴,李整林,吴双林,王梦圆,顾怡鸣. 声学滑翔机联合的深海水下声源定位. 声学学报. 2023(03): 437-446 . 本站查看
    9. 韩志斌,彭朝晖,宋俊,孟雷,杨秀庭,苏冰. Acoustic multipath structure in direct zone of deep water and bearing estimation of tow ship noise of towed line array. Chinese Physics B. 2022(05): 498-506 .
    10. 毕雪洁,王彪,马林,李晓曼,何呈. 基于双水听器的浅海水声目标深度分类方法. 江苏科技大学学报(自然科学版). 2022(06): 1-8 .
    11. 马鸿悦,李朝晖. 旋转双阵元水下目标定向方法. 声学学报. 2021(06): 1039-1049 . 本站查看
    12. 王文博,苏林,贾雨晴,任群言,马力. 深海直达波区卷积神经网络测距方法. 声学学报. 2021(06): 1081-1092 . 本站查看
    13. 张旭,李智生,邱仁贵,董楠. 深海季节性环境变化对半会聚区尺度水面声定位影响分析. 海洋学报. 2020(03): 59-71 .
    14. 曹怀刚,赵振东,郭圣明,马力. 利用简正模态相位关系的浅海声源深度分辨方法. 声学学报. 2020(06): 801-810 . 本站查看
    15. 南德,李朝晖. 移动平台超短基线阵实现水下目标高精度定位. 声学学报. 2019(04): 534-544 . 本站查看
    16. 张旭. 深海分层介质中的无源声定位时差交会特性. 科学通报. 2019(24): 2523-2536 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (54) PDF downloads (18) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return