EI / SCOPUS / CSCD 收录

中文核心期刊

XU Boqiang, SHEN Zhonghua, NI Xiaowu, GUAN Jianfei, LU Jian. Numerical simulation of laser thermo-elastic generated surface acoustic waves by finite element method in coating/substrate systems[J]. ACTA ACUSTICA, 2005, 30(3): 201-206. DOI: 10.15949/j.cnki.0371-0025.2005.03.002
Citation: XU Boqiang, SHEN Zhonghua, NI Xiaowu, GUAN Jianfei, LU Jian. Numerical simulation of laser thermo-elastic generated surface acoustic waves by finite element method in coating/substrate systems[J]. ACTA ACUSTICA, 2005, 30(3): 201-206. DOI: 10.15949/j.cnki.0371-0025.2005.03.002

Numerical simulation of laser thermo-elastic generated surface acoustic waves by finite element method in coating/substrate systems

More Information
  • PACS: 
    • 43.60  (声学信号处理)
  • Received Date: August 12, 2003
  • Revised Date: April 08, 2004
  • Available Online: August 04, 2022
  • Laser generated surface acoustic waves provide a useful tool for determining the elastic properties of coatings. Taking the temperature dependence of material properties into consideration, an optimized finite element is developed to simulate the laser thermo-elastic generation and propagation of surface acoustic waves in coating/substrate systems based on a well understanding of the influences of element size and integration time step on the solution stability. Besides the surface skimming longitudinal waves, a normal dispersive surface acoustic wave is observed in slow coating and fast substrate combination, while an anomalous dispersive surface acoustic wave is observed in fast coating and slow substrate combination, which confirm the validity of this model. Furthermore, a pseudo surface acoustic wave is observed in fast coating and slow substrate combination by decreasing the size of the laser spot, which allows generating higher frequency than the cutoff frequency of this system.
  • Related Articles

    [1]XIE Linzhou, LONG Tianyang, GUO Xiasheng, ZHANG Dong. Behavioral responses of Caenorhabditis elegans to surface acoustic waves[J]. ACTA ACUSTICA, 2024, 49(3): 431-439. DOI: 10.12395/0371-0025.2023072
    [2]LI Yingyin, ZHOU Wei, PENG Benxian, ZHANG Chunqiu, QUAN Hao, MENG Long. Cell enrichment method based on zinc oxide thin film surface acoustic wave device[J]. ACTA ACUSTICA, 2024, 49(3): 398-402. DOI: 10.12395/0371-0025.2023308
    [3]DONG Ming, YU Xiangjun, MA Hongwei, CHEN Yuan, CAO Xiangang, WAN Xiang, WANG Xin. A hybrid method for ultrasonic echo of defects using spatial impulse response and finite element method[J]. ACTA ACUSTICA, 2023, 48(5): 996-1003. DOI: 10.12395/0371-0025.2022037
    [4]SONG Bowen, MA Qi, HU Wenxiang, QIAN Menglu. Ultrasonic Scholte wave dispersive properties and parameters characterization of films in water immersion layered thin film-substrate structure[J]. ACTA ACUSTICA, 2023, 48(1): 128-137. DOI: 10.15949/j.cnki.0371-0025.2023.01.019
    [5]CUI Baile, WANG Wen, JIN Jing, CHENG Lina, XUE Xufeng, LIANG Yong. Surface acoustic wave voltage sensing mechanism based on thermoacoustic conversion[J]. ACTA ACUSTICA, 2023, 48(1): 112-118. DOI: 10.15949/j.cnki.0371-0025.2023.01.009
    [6]FAN Yiliang, JI Zhenlin. Finite element predictive method and analysis for the acoustic attenuation performance of hybrid mufflers[J]. ACTA ACUSTICA, 2022, 47(5): 675-685. DOI: 10.15949/j.cnki.0371-0025.2022.05.009
    [7]CHEN Zhanghong, TIAN Miao, ZHAO Wei. Properties of surface acoustic wave bandgaps in honeycomb phononic crystal embedded with piezoelectric substrate[J]. ACTA ACUSTICA, 2021, 46(2): 255-262. DOI: 10.15949/j.cnki.0371-0025.2021.02.010
    [8]JIA Yana, WANG Wen, XUE Xufeng, WANG Chenghao, ZHOU Qingli, LI He. Surface acoustic wave magnetostrictive effect for current sensing[J]. ACTA ACUSTICA, 2019, 44(4): 756-764. DOI: 10.15949/j.cnki.0371-0025.2019.04.037
    [9]LIU Jiuling, HAO Wenchang, LIU Minghua, LIANG Yong, HE Shitang. Influence of resonant cavity of a resonance detector on the sensitivity of a surface acoustic wave gas chromatograph gas sensor system[J]. ACTA ACUSTICA, 2018, 43(5): 803-809. DOI: 10.15949/j.cnki.0371-0025.2018.05.010
    [10]ZHAO Yiyu, LI Honglang, CHENG Lina, KE Yabing, ZHAO Jianzhang, HE Shitang. An analytical method of electrodes mass load effect for surface transverse wave pressure sensor[J]. ACTA ACUSTICA, 2018, 53(3): 348-354. DOI: 10.15949/j.cnki.0371-0025.2018.03.010

Catalog

    Article Metrics

    Article views (44) PDF downloads (7) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return