EI / SCOPUS / CSCD 收录

中文核心期刊

WU Guan-jun. MODELS OF THE LOW-NOISE-CHANNEL IN SHALLOW WATER[J]. ACTA ACUSTICA, 1988, 13(3): 222-228. DOI: 10.15949/j.cnki.0371-0025.1988.03.010
Citation: WU Guan-jun. MODELS OF THE LOW-NOISE-CHANNEL IN SHALLOW WATER[J]. ACTA ACUSTICA, 1988, 13(3): 222-228. DOI: 10.15949/j.cnki.0371-0025.1988.03.010

MODELS OF THE LOW-NOISE-CHANNEL IN SHALLOW WATER

More Information
  • Received Date: June 13, 1985
  • Available Online: August 07, 2022
  • Based on the theory of the local spectrum of ambient-sea noise field,theoretical models of the low-noise-channel for typical shallow-water negative gradient (or thermocline) are developed.The results show that,for the wind-related surface noise sources,the noise field at frequencies above a few hundred Hz is clearly characteristic of the low-noise-channel for above-mentioned sea-hydrographic distribution and various sea-bottom types.
  • Related Articles

    [1]FANG Tao, HUA Bo, WEI Jiali, WANG Kai, LIU Jin, WANG Biao. Non-cooperative underwater acoustic OFDM intra-class modulation recognition based on subcarrier channel model blind equalization[J]. ACTA ACUSTICA, 2024, 49(5): 1061-1072. DOI: 10.12395/0371-0025.2023059
    [2]XU Yanwei, XUE Meng, GU Haoxiang, LIU Minggang, HOU Chaohuan. Modeling and detection performance analysis of target echoes coupled with shallow water acoustic channels[J]. ACTA ACUSTICA, 2024, 49(4): 719-730. DOI: 10.12395/0371-0025.2023226
    [3]SUN Junping, LIN Jianheng, YI Xuejuan, JIANG Pengfei, LI Na, JIANG Guojian. Virtual source array for estimating the intensity of target noise source in shallow water[J]. ACTA ACUSTICA, 2023, 48(4): 724-732. DOI: 10.15949/j.cnki.0371-0025.2023.04.024
    [4]YIN Lijun, WU Jinrong, HOU Qiannan, MO Yaxiao, MA Li. Inversion for amplitude parameter of bottom reflection coefficient by using reverberation with noise correction[J]. ACTA ACUSTICA, 2022, 47(5): 634-642. DOI: 10.15949/j.cnki.0371-0025.2022.05.007
    [5]YIN Jingwei, GAO Xinbo, HAN Xiao, ZHANG Xiao, WANG Dayu, ZHANG Jincan. Underwater acoustic channel estimation and impulsive noise mitigation based on sparse Bayesian learning[J]. ACTA ACUSTICA, 2021, 46(6): 813-824. DOI: 10.15949/j.cnki.0371-0025.2021.06.004
    [6]XUE Cheng, GONG Zaixiao, GU Yiming, WANG Yu, LIN Peng, LI Zhenglin. Channel matching of shallow water active detection combined with convolutional neural network[J]. ACTA ACUSTICA, 2021, 46(6): 800-812. DOI: 10.15949/j.cnki.0371-0025.2021.06.003
    [7]YIN Yanling, QIAO Gang, LIU Songzuo, ZHANG Yu. Shallow water time-varying multipath channel characteristic analysis and model amendment[J]. ACTA ACUSTICA, 2019, 44(1): 96-105. DOI: 10.15949/j.cnki.0371-0025.2019.01.011
    [8]CHEN Bo, ZHAO Mei, HU Zhangqing, Zygmunt Klusek. Analysis on spatial coherence of ambient noise and geoacoustic inversion in shallow water[J]. ACTA ACUSTICA, 2018, 53(3): 298-306. DOI: 10.15949/j.cnki.0371-0025.2018.03.004
    [9]HUANG Haining, LIU Chonglei, LI Qihu, LIU Na, WEI Chonghua, YIN Li. Multipath structure of thetypical under-ice sound channel in Arctic:theory and experiment[J]. ACTA ACUSTICA, 2018, 53(3): 273-282. DOI: 10.15949/j.cnki.0371-0025.2018.03.001
    [10]ZHU Guangping, YIN Jingwei, CHEN Wenjian, HU Siwei, ZHOU Huanling, GUO Longxiang. Modeling and characterizing the typical under-ice acoustic channel for the Arctic[J]. ACTA ACUSTICA, 2017, 42(2): 152-158. DOI: 10.15949/j.cnki.0371-0025.2017.02.003

Catalog

    Article Metrics

    Article views (42) PDF downloads (18) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return