EI / SCOPUS / CSCD 收录

中文核心期刊

WANG Chong, ZHU Yunkai, DONG Qi, LI Boyi, FENG Ting, LI Ying, CHEN Yaqing, TA De'an. Evaluation of chronic prostatitis in rats based on photoacoustic spectrum analysis[J]. ACTA ACUSTICA, 2024, 49(3): 424-430. DOI: 10.12395/0371-0025.2024049
Citation: WANG Chong, ZHU Yunkai, DONG Qi, LI Boyi, FENG Ting, LI Ying, CHEN Yaqing, TA De'an. Evaluation of chronic prostatitis in rats based on photoacoustic spectrum analysis[J]. ACTA ACUSTICA, 2024, 49(3): 424-430. DOI: 10.12395/0371-0025.2024049

Evaluation of chronic prostatitis in rats based on photoacoustic spectrum analysis

More Information
  • PACS: 
    • 43.35  (Ultrasonics, quantum acoustics, and physical effects of sound)
    • 43.60  (Acoustic signal processing)
  • Received Date: January 30, 2024
  • Revised Date: March 19, 2024
  • Available Online: May 08, 2024
  • The feasibility of using photoacoustic spectral parameters to evaluate chronic prostatitis is explored. A chronic prostatitis model in rats was established by injecting Freund’s complete adjuvant. Prostate tissue sections were scanned using a photoacoustic microscopy instrument to acquire raw photoacoustic signals. Spectral parameters of the signals (slope, intercept, average spectral power, spectral centroid shift) were calculated, analyzed, and statistically evaluated, followed by parameter imaging. The influence of selecting different frequency bands on the evaluation results was also discussed. Experimental results indicate significant differences in the statistical and imaging results of spectral parameters between inflammatory and normal tissues. Imaging using spectral centroid shift (SCS) can differentiate between inflammatory and normal tissues. Moreover, under fixed bandwidth conditions, the slope parameter and average spectral power parameter yield clear imaging results in the high-frequency and low-frequency spectral ranges, respectively, with minimal influence of different frequency bands on the imaging of the intercept parameter.

  • [1]
    Yebes A, Toribio-Vazquez C, Martinez-Perez S, et al. Prostatitis: A review. Curr. Urol. Rep., 2023; 24(5): 241−251 DOI: 10.1007/s11934-023-01150-z
    [2]
    李岩密, 唐杰, 郭爱桃, 等. 肉芽肿性前列腺炎经直肠常规超声及超声造影特征探讨. 中国超声医学杂志, 2011; 27(12): 1105−1108 DOI: 10.3969/j.issn.1002-0101.2011.12.017
    [3]
    Shakur A, Hames K, O'Shea A, et al. Prostatitis: Imaging appearances and diagnostic considerations. Clin. Radiol., 2021; 76(6): 416−426 DOI: 10.1016/j.crad.2021.01.007
    [4]
    Jo J, Lee C H, Folz J, et al. In vivo photoacoustic lifetime based oxygen imaging with tumor targeted G2 polyacrylamide nanosonophores. ACS Nano, 2019; 13(12): 14024−14032 DOI: 10.1021/acsnano.9b06326
    [5]
    Jo J, Lee C H, Kopelman R, et al. In vivo quantitative imaging of tumor pH by nanosonophore assisted multispectral photoacoustic imaging. Nat. Commun., 2017; 8(1): 471 DOI: 10.1038/s41467-017-00598-1
    [6]
    Jian X H, Dong F L, Xu J, et al. Frequency domain analysis of multiwavelength photoacoustic signals for differentiating tissue components. Int. J. Thermophys., 2018; 39(5): 1−9 DOI: 10.1007/s10765-018-2381-4
    [7]
    Jo J, Siddiqui J, Zhu Y, et al. Photoacoustic spectral analysis at ultraviolet wavelengths for characterizing the Gleason grades of prostate cancer. Opt. Lett., 2020; 45(21): 6042−6045 DOI: 10.1364/OL.409249
    [8]
    Xu G, Meng Z X, Lin J D, et al. The functional pitch of an organ: Quantification of tissue texture with photoacoustic spectrum analysis. Radiology, 2014; 271(1): 248−254 DOI: 10.1148/radiol.13130777
    [9]
    Chitnis P V, Mamou J, Feleppa E J, et al. Spectrum analysis of photoacoustic signals for characterizing lymph nodes. J. Acoust. Soc. Am., 2014; 135(4S): 2372−2372 DOI: 10.1121/1.4877828
    [10]
    Zhang H, Chao W, Cheng Q, et al. Interstitial photoacoustic spectral analysis: Instrumentation and validation. Biomed. Opt. Express, 2017; 8(3): 1689−1697 DOI: 10.1364/BOE.8.001689
    [11]
    程茜, 陈盈娜, 张浩南, 等. 基于光声谱的生物组织“指纹”光声诊断术. 应用声学, 2018; 37(1): 88−95 DOI: 10.11684/j.issn.1000-310X.2018.01.013
    [12]
    Ni L, Lin W, Kasputis A, et al. Assessment of prostate cancer progression using a translational needle photoacoustic sensing probe: Preliminary study with intact human prostates ex-vivo. Photoacoust., 2022; 28: 100418 DOI: 10.1016/j.pacs.2022.100418
    [13]
    Jo J, Salfi E, Folz J, et al. Photoacoustic spectral analysis for evaluating the aggressiveness of prostate cancer labeled by methylene blue polyacrylamide nanoparticles. Biosensors, 2023; 13(3): 403 DOI: 10.3390/bios13030403
    [14]
    Xu G, Davis M C, Siddiqui J, et al. Quantifying Gleason scores with photoacoustic spectral analysis: Feasibility study with human tissues. Biomed. Opt. Express, 2015; 6(12): 4781−4789 DOI: 10.1364/BOE.6.004781
    [15]
    Yang Y, Wang S, Tao C, et al. Photoacoustic tomography of tissue subwavelength microstructure with a narrowband and low frequency system. Appl. Phys. Lett., 2012; 101(3): 034105 DOI: 10.1063/1.4736994
    [16]
    Nickel J C, True L D, Krieger J N, et al. Consensus development of a histopathological classification system for chronic prostatic inflammation. BJU Int., 2001; 87(9): 797−805 DOI: 10.1046/j.1464-410x.2001.02193.x
    [17]
    Meng L Q, Yang F Y, Wang M S, et al. Quercetin protects against chronic prostatitis in rat model through NF-κB and MAPK signaling pathways. Prostate, 2018; 78(11): 790−800 DOI: 10.1002/pros.23536
    [18]
    徐康, 王成, 张梦娇, 等. 动脉粥样硬化血管的光声频谱分析. 激光与光电子学进展, 2021; 58(12): 478−486 DOI: 10.3788/LOP202158.1217
    [19]
    封婷, 解维娅, 徐文逸, 等. 光声骨检测研究进展. 科学通报, 2023; 68(26): 3437−3454 DOI: 10.1360/TB-2023-0335
    [20]
    张涛, 陶超, 刘晓峻. 基于光声成像的生物组织微结构定征研究进展. 应用声学, 2021; 40(1): 11−21 DOI: 10.11684/j.issn.1000-310X.2021.01.002
    [21]
    Huang S, Qin Y, Chen Y, et al. Interstitial assessment of aggressive prostate cancer by physio-chemical photoacoustics: An ex vivo study with intact human prostates. Med. Phys., 2018; 45(9): 4125−4132 DOI: 10.1002/mp.13061
    [22]
    Gao X, Tao C, Zhu R, et al. Noninvasive low-cycle fatigue characterization at high depth with photoacoustic eigen-spectrum analysis. Sci. Rep., 2018; 8(1): 7751 DOI: 10.1038/s41598-018-26140-x
    [23]
    Man F, Cleary S J. Imaging inflammation. Springer International Publishing, 2023: 191−221
    [24]
    他得安, 王威琪, 汪源源, 等. 评价松质骨状况的一种背散射频谱方法. 声学技术, 2007; 26(3): 406−410 DOI: 10.3969/j.issn.1000-3630.2007.03.011
    [25]
    Jiang Y, Liu C, Li R, et al. Analysis of apparent integrated backscatter coefficient and backscattered spectral centroid shift in calcaneus in vivo for the ultrasonic evaluation of osteoporosis. Ultrasound Med. Biol., 2014; 40(6): 1307−1317 DOI: 10.1016/j.ultrasmedbio.2013.12.024
    [26]
    谭毅, 邢达, 王毅, 等. 超声换能器带宽对光声成像的影响. 光学学报, 2005; 25(1): 40−44 DOI: 10.3321/j.issn:0253-2239.2005.01.009
    [27]
    谭毅, 黄新民, 任亚杰. 探测器频带对光声成像分辨率的影响研究. 应用光学, 2011; 32(5): 831−834 DOI: 10.3969/j.issn.1002-2082.2011.05.004
  • Related Articles

    [1]JIA Licheng, XUE Rihui, MENG Fansheng. Design, fabrication, and characterization of an electronic stethoscope based on piezoelectric micromachined ultrasonic transducer array[J]. ACTA ACUSTICA. DOI: 10.12395/0371-0025.2024164
    [2]SONG Bowen, MA Qi, HU Wenxiang, QIAN Menglu. Ultrasonic Scholte wave dispersive properties and parameters characterization of films in water immersion layered thin film-substrate structure[J]. ACTA ACUSTICA, 2023, 48(1): 128-137. DOI: 10.15949/j.cnki.0371-0025.2023.01.019
    [3]ZHAO Jinyu, TAO Chao, ZHANG Shuyi, FAN Li, SHUI Xiuji. Experimental and theoretical studies for laser-enhanced thermal effects during focused ultrasound radiation on biological tissues[J]. ACTA ACUSTICA, 2018, 43(4): 665-672. DOI: 10.15949/j.cnki.0371-0025.2018.04.026
    [4]ZHU Wei, WU Hezhen. Parameters characterization and analysis of coded excitation ultrasound for rock properties[J]. ACTA ACUSTICA, 2017, 42(1): 67-75. DOI: 10.15949/j.cnki.0371-0025.2017.01.009
    [5]LUO Jianwen, FAN Yu, BAI Jing. A fast algorithm for tissue elastogram based on displacement[J]. ACTA ACUSTICA, 2002, 27(1): 18-22. DOI: 10.15949/j.cnki.0371-0025.2002.01.004
    [6]ZHEN Bin, WAN Mingxi, WU Chaoxia. Internal strain and elasticity estimate of soft tissue based on interscatterer spacings[J]. ACTA ACUSTICA, 1998, 23(4): 297-304. DOI: 10.15949/j.cnki.0371-0025.1998.04.002
    [7]GONG Xiufen, ZHANG Dong. Nonlinear parameter tomography and biological tissue characterization[J]. ACTA ACUSTICA, 1998, 23(3): 197-203. DOI: 10.15949/j.cnki.0371-0025.1998.03.002
    [8]FENG Ruo, ZHANG Wei. Ultrasonic spectrum characterization for pig's pathological liver tissues[J]. ACTA ACUSTICA, 1994, 19(4): 252-257. DOI: 10.15949/j.cnki.0371-0025.1994.04.002
    [9]MAO Weinian, FENG Ruo, ZHANG Wei. Study on the ultrasonic backscattering spectrum of mammalian animal soft tissues[J]. ACTA ACUSTICA, 1992, 17(6): 430-435. DOI: 10.15949/j.cnki.0371-0025.1992.06.005
    [10]DONG Yan-wu, SUN Yong-chen, WANG Shu-en, ZHANG Jun, QIAN Yun-qiu. ULTRASONIC ATTENUATION IN NORMAL AND ABNORMAL HUMAN TISSUES[J]. ACTA ACUSTICA, 1988, 13(2): 88-93. DOI: 10.15949/j.cnki.0371-0025.1988.02.002

Catalog

    Article Metrics

    Article views (64) PDF downloads (24) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return