EI / SCOPUS / CSCD 收录

中文核心期刊

JIN Jiangming, HOU Liujiang, LU Huancai, ZHOU Daren, YAO Lei. Method for reconstructing random acoustic radiation from a plate under turbulent boundary layer excitation[J]. ACTA ACUSTICA. DOI: 10.12395/0371-0025.2024006
Citation: JIN Jiangming, HOU Liujiang, LU Huancai, ZHOU Daren, YAO Lei. Method for reconstructing random acoustic radiation from a plate under turbulent boundary layer excitation[J]. ACTA ACUSTICA. DOI: 10.12395/0371-0025.2024006

Method for reconstructing random acoustic radiation from a plate under turbulent boundary layer excitation

More Information
  • PACS: 
    • 43.20  (General linear acoustics)
    • 43.60  (Acoustic signal processing)
    • 43.40  (Structural acoustics and vibration)
  • Received Date: January 06, 2024
  • Revised Date: April 01, 2024
  • Available Online: March 16, 2025
  • This study presents a method for reconstructing the stochastic sound field radiated by a plate structure under the excitation of a turbulent boundary layer (TBL). In the case of a homogeneous sound field radiated by an infinite plate, the homogeneous stochastic sound field is reconstructed based on uncorrelated wall plane waves and a plane acoustic holography model. This method achieves an accurate reconstruction of the random sound field without known material property information of the plate structure. For the non-homogeneous sound field radiated by a simply supported plate, the stochastic sound field is decomposed into a superposition of structural acoustic responses under excitation by plane waves of various wavenumbers, achieving an accurate reconstruction of the random sound field. Numerical simulation results indicate that the reconstruction error can be reduced from 61.67% to 23.18% by applying wavenumber domain filtering to mitigate the effect of a 1.79% measurement error. The results represent the spatial distribution of the stochastic sound pressure field under TBL excitation, providing a theoretical basis for structural vibration damping, noise reduction, and non-contact vibration measurements under TBL excitation.

  • [1]
    Lindvall J, Västfjäll D. The effect of interior aircraft noise on pilot performance. Percept. Mot. Skills, 2013; 116(2): 472−490 DOI: 10.2466/27.24.PMS.116.2.472-490
    [2]
    徐嘉启, 梅志远, 李华东, 等. 湍流边界层激励下加筋平板振声响应特性研究. 振动与冲击, 2020; 39(14): 156−163 DOI: 10.13465/j.cnki.jvs.2020.14.023
    [3]
    潘晨鸽, 李榆银, 张亚辉. 湍流边界层作用下薄板随机振动声辐射的辛方法. 应用数学和力学, 2018; 39(1): 50−63 DOI: 10.21656/1000-0887.380151
    [4]
    Yu Y, Wang D, Zhao G, et al. Size optimization of mid-frequency vibro-acoustic systems in the framework of modal energy analysis. Struct. Multidiscipl. Optim., 2022; 65(10): 289 DOI: 10.1007/s00158-022-03396-6
    [5]
    Strawderman W A. Turbulence-induced plate vibrations: an evaluation of finite-and infinite-plate models. J. Acoust. Soc. Am., 1969; 46(5B): 1294−1307 DOI: 10.1121/1.1911855
    [6]
    周振龙, 梅志远, 徐嘉启, 等. 水下湍流激励复合材料板的振声特性研究. 华中科技大学学报(自然科学版), 2021; 49(3): 105−112 DOI: 10.13245/j.hust.210319
    [7]
    Maxit L, Guasch O, Meyer V, et al. Noise radiated from a periodically stiffened cylindrical shell excited by a turbulent boundary layer. J. Sound Vib., 2020; 466: 115016 DOI: 10.1016/j.jsv.2019.115016
    [8]
    Koukounian V N, Mechefske C K. Computational modelling and experimental verification of the vibro-acoustic behavior of aircraft fuselage sections. Appl. Acoust., 2018; 132: 8−18 DOI: 10.1016/j.apacoust.2017.11.004
    [9]
    Fernandez-Grande E. Four decades of near-field acoustic holography. J. Acoust. Soc. Am., 2022; 152(1): 1−8 DOI: 10.1121/10.0011807
    [10]
    Geng L, Chen X G, He C D, et al. Compressive nonstationary near-field acoustic holography for reconstructing the instantaneous sound field. Mech. Syst. Signal Process., 2023; 204: 110779 DOI: 10.1016/j.ymssp.2023.110779
    [11]
    Nelson P A, Yoon S H. Estimation of acoustic source strength by inverse methods: Part I, Conditioning of the inverse problem. J. Sound Vib., 2000; 233(4): 639−664 DOI: 10.1006/jsvi.1999.2837
    [12]
    Yoon S H, Nelson P A. Estimation of acoustic source strength by inverse methods: Part II, Experimental investigation of methods for choosing regularization parameters. J. Sound Vib., 2000; 233(4): 665−701 DOI: 10.1006/jsvi.2000.2836
    [13]
    Fahy F J. On simulating the transmission through structures of noise from turbulent boundary layer pressure fluctuations. J. Sound Vib., 1966; 3(1): 57−81 DOI: 10.1016/0022-460X(66)90168-4
    [14]
    Aucejo M, Maxit L, Guyader J L. Experimental simulation of turbulent boundary layer induced vibrations by using a synthetic array. J. Sound Vib., 2012; 331(16): 3824−3843 DOI: 10.1016/j.jsv.2012.04.010
    [15]
    Maxit L. Simulation of the pressure field beneath a turbulent boundary layer using realizations of uncorrelated wall plane waves. J. Acoust. Soc. Am., 2016; 140(2): 1268−1285 DOI: 10.1121/1.4960516
    [16]
    Berry A, Dia R, Robin O. A wave field synthesis approach to reproduction of spatially correlated sound fields. J. Acoust. Soc. Am., 2012; 131(2): 1226−1239 DOI: 10.1121/1.3675942
    [17]
    Robin O, Berry A, Moreau S. Reproduction of random pressure fields based on planar nearfield acoustic holography. J. Acoust. Soc. Am., 2013; 133(6): 3885−3899 DOI: 10.1121/1.4802898
    [18]
    Maxit L, Denis V. Prediction of flow induced sound and vibration of periodically stiffened plates. J. Acoust. Soc. Am., 2013; 133(1): 146−160 DOI: 10.1121/1.4768875
    [19]
    Corcos G M. The structure of the turbulent pressure field in boundary-layer flows. J. Fluid Mech., 1964; 18(3): 353−378 DOI: 10.1017/S002211206400026X
    [20]
    Camussi R. Noise sources in turbulent shear flows: Fundamentals and applications. Springer Vienna, 2013: 360−367
    [21]
    VanMarcke E. 随机场: 分析与综合. 陈朝晖, 范文亮, 译. 修订版. 北京: 高等教育出版社, 2017
    [22]
    Guillon C, Redon E, Maxit L. Synthesis of wall pressure fields of non-homogeneous turbulent boundary layers for vibroacoustic simulations. J. Acoust. Soc. Am., 2022; 151(2): 1039−1054 DOI: 10.1121/10.0009368
    [23]
    Williams E G. Fourier acoustics: Sound radiation and nearfield acoustical holography. San Diego: Academic, 1999
    [24]
    金江明, 熊成杰, 侯刘奖等. 湍流边界层激励下结构声辐射近场计算方法: CN116167109A. 2023-05-26
    [25]
    Harris F J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE, 1978; 66(1): 51−83 DOI: 10.1109/PROC.1978.10837
    [26]
    赵岩. 结构非平稳随机振动分析的谱方法. 大连: 大连理工大学出版社, 2017

Catalog

    Article Metrics

    Article views (13) PDF downloads (8) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return