EI / SCOPUS / CSCD 收录

中文核心期刊

LIU Xiao, TANG Hu, KONG Fankai, ZHAO Jiwei, CHEN Siping, PENG Jue. Design of a 1.5-dimensional ultrasound probe for transesophageal echocardiography[J]. ACTA ACUSTICA, 2024, 49(3): 410-416. DOI: 10.12395/0371-0025.2023317
Citation: LIU Xiao, TANG Hu, KONG Fankai, ZHAO Jiwei, CHEN Siping, PENG Jue. Design of a 1.5-dimensional ultrasound probe for transesophageal echocardiography[J]. ACTA ACUSTICA, 2024, 49(3): 410-416. DOI: 10.12395/0371-0025.2023317

Design of a 1.5-dimensional ultrasound probe for transesophageal echocardiography

More Information
  • PACS: 
    • 43.35  (Ultrasonics, quantum acoustics, and physical effects of sound)
    • 43.60  (Acoustic signal processing)
  • Received Date: December 30, 2023
  • Revised Date: March 19, 2024
  • Available Online: May 08, 2024
  • A 1.5-dimensional (1.5D) transesophageal echocardiography probe is designed and developed. Compared with the traditional 1-dimensional (1D) probe, the probe can achieve variable aperture and focus in elevation direction, thus improving the consistency of slice thickness in far field and near field. A 1.5D transesophageal ultrasonic probe with 320 elements is developed using traditional PZT-5H piezoelectric ceramics. The electrical properties, acoustic properties, and acoustic field distribution of the probe are tested. The measured center frequency and −6 dB fractional bandwidth of the 1.5D probe are 5.6 MHz and 76%, respectively. In the range of 5−70 mm, the slice thickness is 7−9 mm for 1D ultrasonic probe and 1.3−2.8 mm for 1.5D ultrasonic probe. The slice thickness difference is less than 0.2 mm in the range of 5−30 mm for 1.5D ultrasonic probe. And the information displayed by images is also more comprehensive and higher in resolution. Therefore, the 1.5D ultrasonic probe has a wider focusing depth, better distribution consistency in the near and far field, and higher spatial resolution.

  • [1]
    伊斯拉木江·吐尔逊, 帕丽旦·尼亚孜, 李元明. 经食管超声心动图与经胸超声心动图引导下继发孔型房间隔缺损封堵疗效比较. 中国现代手术学杂志, 2023; 27(3): 193−197 DOI: 10.16260/j.cnki.1009-2188.2023.03.004
    [2]
    赵若寒, 许春燕, 吴纯, 等. 镇静、镇痛下经食管超声心动图的临床应用进展. 临床心血管病杂志, 2023; 39(12): 917−921 DOI: 10.13201/j.issn.1001-1439.2023.12.004
    [3]
    郭影, 钟小芳, 林小璇, 等. 经食管超声心动图在心脏介入手术中的临床应用价值. 临床心血管病杂志, 2023; 39(8): 585−590 DOI: 10.13201/j.issn.1001-1439.2023.08.004
    [4]
    Jaidka A, Hobbs H, Koenig S, et al. Better with ultrasound: Transesophageal echocardiography. Chest, 2019; 155(1): 194−201 DOI: 10.1016/j.chest.2018.09.023
    [5]
    Lancee C T, Ligtvoet C M, De Jong N. On the design and construction of a transesophageal scanner. In: Hanrath P, Bleifeld W, Souquet J (eds). Cardiovascular diagnosis by ultrasound. Springer Dordrecht, 1982: 260−269
    [6]
    Michau S, Mauchamp P, Dufait R. Single crystal-based phased array for transoesophagial ultrasound probe. IEEE Ultrasonics Symposium, IEEE, Munich, Germany, 2002: 1269−1272
    [7]
    Kwiecinski W, Bessière F, Colas E C, et al. Cardiac shear-wave elastography using a transesophageal transducer: Application to the mapping of thermal lesions in ultrasound transesophageal cardiac ablation. Phys. Med. Biol., 2015; 60(20): 7829 DOI: 10.1088/0031-9155/60/20/7829
    [8]
    Bera D, Raghunathan S, Chen C, et al. Multiline 3D beamforming using micro-beamformed datasets for pediatric transesophageal echocardiography. Phys. Med. Biol., 2018; 63(7): 075015 DOI: 10.1088/1361-6560/aab45e
    [9]
    Daeichin V, Bera D, Raghunathan S, et al. Acoustic characterization of a miniature matrix transducer for pediatric 3D transesophageal echocardiography. Ultrasound Med. Biol., 2018; 44(10): 2143−2154 DOI: 10.1016/j.ultrasmedbio.2018.06.009
    [10]
    Raghunathan S, Bera D, Chen C, et al. Design of a miniature ultrasound probe for 3D transesophageal echocardiography. IEEE International Ultrasonics Symposium, Chicago, IL, USA , 2014: 2091−2094
    [11]
    Bera D, van den Adel F, Radeljic-Jakic N, et al. Fast volumetric imaging using a matrix transesophageal echocardiography probe with partitioned transmit–receive array. Ultrasound Med. Biol., 2018; 44(9): 2025−2042 DOI: 10.1016/j.ultrasmedbio.2018.05.017
    [12]
    Voorneveld J, Saaid H, Schinkel C, et al. 4-D echo-particle image velocimetry in a left ventricular phantom. Ultrasound Med. Biol., 2020; 46(3): 805−817 DOI: 10.1016/j.ultrasmedbio.2019.11.020
    [13]
    Hung J, Lang R, Flachskampf F, et al. 3D echocardiography: A review of the current status and future directions. J. Am. Soc. Echocardiogr., 2007; 20(3): 213−233 DOI: 10.1016/j.echo.2007.01.010
    [14]
    孙士越. 用于实时三维超声成像的面阵探头设计与研究. 硕士学位论文, 武汉: 华中科技大学, 2015
    [15]
    Seo C H, Yen J T. A 256×256 2-D array transducer with row-column addressing for 3-D rectilinear imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2009; 56(4): 837−847 DOI: 10.1109/TUFFC.2009.1107
    [16]
    Lang R M, Badano L P, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. – Cardiovasc. Imaging, 2015; 16(3): 233−271 DOI: 10.1093/ehjci/jev014
    [17]
    王瑶. 二维超声心动图检查中常见的伪像分析. 临床超声医学杂志, 2017; 19(1): 63−65 DOI: 10.16245/j.cnki.issn1008-6978.2017.01.028
    [18]
    Scholten H J, Weijers G, de Wild M, et al. Differences in ultrasound elevational beam width (slice thickness) between popular handheld devices. WFUMB Ultrasound Open, 2023; 1(2): 100009 DOI: 10.1016/j.wfumbo.2023.100009
    [19]
    Daft C, Wildes D, Thomas L, et al. A 1.5D transducer for medical ultrasound. IEEE Ultrasonics symposium, Cannes, France, 1994: 1491−1495
    [20]
    Wildes D G, Chiao R Y, Daft C M, et al. Elevation performance of 1.25D and 1.5D transducer arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1997; 44(5): 1027−1037 DOI: 10.1109/58.655628
    [21]
    Desilets C S, Fraser J D, Kino G S. The design of efficient broad-band piezoelectric transducers. IEEE Trans. Sonics Ultrason., 1978; 25(3): 115−125 DOI: 10.1109/T-SU.1978.31001
    [22]
    伍于添. 医学超声设备原理、设计、应用. 北京: 科学技术文献出版社, 2012
    [23]
    Zou C, Li Y, Hou S, et al. Development of cardiac phased array with large-size PZN-5.5% PT single crystals. IEEE Trans. Sonics Ultrason. Ferroelectr. Freq. Control, 2021; 69(2): 744−750 DOI: 10.1109/TUFFC.2021.3120774

    Zou C, Li Y, Hou S, et al. Development of cardiac phased array with large-size PZN-5.5% PT single crystals. IEEE Trans. Sonics Ultrason. Ferroelectr. Freq. Control, 2021; 69(2): 744−750 DOI: 10.1109/TUFFC.2021.3120774
  • Related Articles

    [1]FENG Yukang, WANG Luojun, ZHENG Han, KONG Xinli, YANG Siqi, CHEN Haixin, CHEN Mian, CHEN Xin, CHEN Siping, LIN Haoming. Evaluation of tumor progression and magnetic hyperthermia therapy efficacy with ultrasound localization microscopy[J]. ACTA ACUSTICA, 2024, 49(3): 417-423. DOI: 10.12395/0371-0025.2023318
    [2]LIU Chuang, LIU Li, ZHU Qiaomiao, LI Yanhao. Real-time monitoring of acoustic cavitation in high intensity focused ultrasound based on phase characteristics of transducer electrical signals[J]. ACTA ACUSTICA, 2023, 48(5): 1004-1011. DOI: 10.12395/0371-0025.2022113
    [3]LI Panpan, LI Yubing, SU Chang, WU Xiaoqing, LIN Weijun. High resolution imaging methods for circular-array based ultrasound computed tomography[J]. ACTA ACUSTICA, 2023, 48(1): 182-192. DOI: 10.15949/j.cnki.0371-0025.2023.01.015
    [4]XU Kailiang, FU Yapeng, YAN Shaoyuan, SUI Yihui, TA Dean, WANG Weiqi. Ultrafast ultrasound Doppler imaging for three-dimensional cerebral injury evaluation[J]. ACTA ACUSTICA, 2023, 48(1): 173-181. DOI: 10.15949/j.cnki.0371-0025.2023.01.024
    [5]YIN Yuxin, YAN Shouguo, HUANG Juan, ZHANG Bixing. Research on focusing methods and sound field characteristics of transcranial ultrasound focusing[J]. ACTA ACUSTICA, 2023, 48(1): 162-172. DOI: 10.15949/j.cnki.0371-0025.2023.01.022
    [6]ZHU Keqing, TIAN Jie, HUANG Haining. Underwater objects classification method in high-resolution sonar images using deep neural network[J]. ACTA ACUSTICA, 2019, 44(4): 595-603. DOI: 10.15949/j.cnki.0371-0025.2019.04.020
    [7]ZHOU Hefeng, CENG Xinwu. Spatial resolution enhancement of nearfield acoustic holography using the fully complex extreme learning machine[J]. ACTA ACUSTICA, 2019, 44(3): 273-284. DOI: 10.15949/j.cnki.0371-0025.2019.03.001
    [8]WANG Ping, JIANG Jinyang, LI Fang, LIN Nan, YUE Ying. Signal to noise ratio dependent postfilter combined with eigenspace-based minimum variance algorithm for ultrasound imaging[J]. ACTA ACUSTICA, 2019, 44(1): 136-144. DOI: 10.15949/j.cnki.0371-0025.2019.01.015
    [9]QIN Bo, MA Xiaochuan, Michael Zapf, YAN Shefeng, Nicole V.Ruiter. The time-window construction and data extraction for the data reduction of ultrasound computer tomography[J]. ACTA ACUSTICA, 2018, 43(2): 189-201. DOI: 10.15949/j.cnki.0371-0025.2018.02.008
    [10]WANG Ping, GONG Zhihui, CHENG Na, LI Na. An improved minimum variance algorithm in ultrasound imaging system[J]. ACTA ACUSTICA, 2017, 42(2): 214-222. DOI: 10.15949/j.cnki.0371-0025.2017.02.010

Catalog

    Article Metrics

    Article views (92) PDF downloads (32) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return