EI / SCOPUS / CSCD 收录

中文核心期刊

SONG Yang, MO Yaxiao, GUO Shidong, FENG Jiabao, ZHENG Guangying. Influence of internal solitary waves on the three-dimensional sound spatial characteristics in shallow sea[J]. ACTA ACUSTICA, 2024, 49(4): 855-867. DOI: 10.12395/0371-0025.2023253
Citation: SONG Yang, MO Yaxiao, GUO Shidong, FENG Jiabao, ZHENG Guangying. Influence of internal solitary waves on the three-dimensional sound spatial characteristics in shallow sea[J]. ACTA ACUSTICA, 2024, 49(4): 855-867. DOI: 10.12395/0371-0025.2023253

Influence of internal solitary waves on the three-dimensional sound spatial characteristics in shallow sea

More Information
  • PACS: 
    • 43.30  (Underwater sound)
    • 43.20  (General linear acoustics)
  • Received Date: October 25, 2023
  • Revised Date: January 08, 2024
  • Aiming at the problem of the influence of internal soliton waves on the spatial characteristics of sound field in shallow sea environment, a three-dimensional underwater sound field calculation method adapted to soliton internal wave environment is established based on the theory of three-dimensional parabolic equation and its high-precision radical operator approximation method. Considering the propagation characteristics of internal soliton waves and the structural characteristics of the sound field in the form of point source column diffusion in shallow sea, the sound field calculation based on the rectangular coordinate system and cylindrical coordinate system is formed. By changing the input form of environmental parameters, the calculation efficiency is improved, and the three-dimensional sound field distribution characteristics under the influence of internal soliton waves are studied. The results show that the vertical and horizontal distribution structure of the three-dimensional sound field under the influence of internal waves changes and increases with the increase of frequency, especially when the depth of the sound source is near the thermocline. In the non-flat seabed environment, the three-dimensional sound field is modulated by the non-horizontal seabed and internal waves, which leads to the change of the horizontal distribution of the sound field under the influence of the soliton internal waves. This further reflects the horizontal refraction effect of the large-scale non-uniformity of the seabed topography on the sound field and the influence of the sound propagation characteristics to a certain extent.

  • [1]
    Cai S, Xie J, He J. An overview of internal solitary waves in the South China Sea. Surv. Geophys., 2012; 33(5): 927−943 DOI: 10.1007/s10712-012-9176-0
    [2]
    Alford M H, MacKinnon J A, Nash J D, et al. Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 2011; 41(11): 2211−2222 DOI: 10.1175/JPO-D-11-073.1
    [3]
    Klymak J M, Pinkel R, Liu C T, et al. Prototypical solitons in the South China Sea. Geophys Res. Lett., 2006; 33(11): L11607 DOI: 10.1029/2006GL025932
    [4]
    郅长红, 徐双东, 韩盼盼, 等. 高阶单向传播内孤立波理论模型适用性. 物理学报, 2022; 71(17): 174701 DOI: 10.7498/aps.71.20220411
    [5]
    Alford M H, Thomas P, MacKinnon J A, et al. The formation and fate of internal waves in the South China Sea. Nature, 2015; 528(7580): 152 DOI: 10.1038/nature14399
    [6]
    朱飞龙, Thorsos E I, 李风华. 耦合微扰简正波方法与孤立子内波. 声学学报, 2018; 43(4): 465−470 DOI: 10.15949/j.cnki.0371-0025.2018.04.006
    [7]
    Gao F, Xu F, Li Z, et al. Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model. Chin. Phys. B, 2023; 32(3): 034302 DOI: 10.1088/1674-1056/ac89dc
    [8]
    胡平, 彭朝晖, 李整林. 南海北部海域内波环境下声传播损失起伏统计特性. 声学学报, 2022; 47(1): 1−15 DOI: 10.15949/j.cnki.0371-0025.2022.01.001
    [9]
    李整林, 张仁和, Badiey M, 等. 孤立子内波引起的高号简正波到达时间起伏. 声学学报, 2021; 36(6): 559−567 DOI: 10.15949/j.cnki.0371-0025.2011.06.013
    [10]
    秦继兴, Katsnelson B, 李整林, 等. 浅海中孤立子内波引起的声能量起伏. 声学学报, 2016; 41(2): 145−153 DOI: 10.15949/j.cnki.0371-0025.2016.02.001
    [11]
    Headrick R H, Lynch J F, Kemp J N, et al. Acoustic normal mode fluctuation statistics in the 1995 SWARM internal wave scattering experiment. J. Acoust. Soc. Am., 2000; 107(1): 201−220 DOI: 10.1121/1.428563
    [12]
    Lynch J F, Jin G L, Pawlowicz R, et al. Acoutic travel-time perturbations due to shallow-water internal waves and internal tides in the Barents Sea Polar Front: Theory and experiment. J. Acoust. Soc. Am., 1996; 99(2): 803−821 DOI: 10.1121/1.414657
    [13]
    刘进忠, 王宁, 高大治. 反演声场简正波耦合系数矩阵. 声学学报, 2006; 31(4): 322−327 DOI: 10.3321/j.issn:0371-0025.2006.04.006
    [14]
    Rouseff D, Turgut A, Wolf S N, et al. Coherence of acoustic modes propagation through shallow water internal waves. J. Acoust. Soc. Am., 2002; 111(4): 1655−1666 DOI: 10.1121/1.1461837
    [15]
    Badiey M, Katsnelson B G, Lynch J F, et al. Frequency dependence and intensity fluctuations due to shallow water internal waves. J. Acoust. Soc. Am., 2007; 122(2): 747−760 DOI: 10.1121/1.2722052
    [16]
    胡涛, 王臻, 郭圣明, 等. 利用声场简正波幅度起伏反演内波传播速度. 哈尔滨工程大学学报, 2020; 41(10): 1518−1523 DOI: 10.11990/jheu.202007063
    [17]
    Yuan C, Grimshaw R, Johnson E, et al. The propagation of internal solitary waves over variable topography in a horizontally two-dimensional frame. J. Phys. Oceanogr., 2018; 48(2): 283−300 DOI: 10.1175/JPO-D-17-0154.1
    [18]
    Lin Y T, Duda T F. A higher-order split-step Fourier parabolic-equation sound propagation solution scheme. J. Acoust. Soc. Am., 2012; 132(2): 61−67 DOI: 10.1121/1.4730328
    [19]
    徐传秀, 朴胜春, 杨士莪, 等. 采用能量守恒和高阶Padé近似的三维水声抛物方程模型. 声学学报, 2016; 41(4): 477−484 DOI: 10.15949/j.cnki.0371-0025.2016.04.004
    [20]
    张泽众, 骆文于, 庞哲, 等. 孤子内波环境下三维声传播建模. 物理学报, 2019; 68(20): 161−168 DOI: 10.7498/aps.68.20190478
    [21]
    Katsnelson B G, Pereselko S A. Low-frequency horizontal acoustic refraction caused by internal wave solitons in a shallow sea. Acoust. Phys., 2000; 46(6): 684−691 DOI: 10.1134/1.1326723
    [22]
    Luo J, Badiey M, Karjadi E A, et al. Observation of sound focusing and defocusing due to propagation nonlinear internal waves. J. Acoust. Soc. Am., 2008; 124(3): 66−72 DOI: 10.1121/1.2963087
    [23]
    Lynch J F, Lin Y T, Duda T F, et al. Acoustic ducting, reflection, refraction, and dispersion by curved nonlinear internal waves in shallow water. IEEE J. Oceanic Eng., 2010; 35(1): 12−27 DOI: 10.1109/JOE.2009.2038512
    [24]
    祝捍皓, 肖瑞, 朱军, 等. 三维浅海环境下孤立子内波对低频声能流的传播影响. 声学学报, 2021; 46(3): 365−374 DOI: 10.15949/j.cnki.0371-0025.2021.03.005
    [25]
    徐传秀. 基于抛物方程近似的三维声场建模与快速计算方法研究. 博士学位论文, 哈尔滨: 哈尔滨工程大学, 2017: 9−11
  • Related Articles

    [1]ZHANG Di, ZHOU Shihong, QI Yubo, DU Shuyuan. The accompanying modulation feature of ship-radiating line spectrums due to the dynamic fluctuating ocean surface[J]. ACTA ACUSTICA, 2022, 47(5): 603-611. DOI: 10.15949/j.cnki.0371-0025.2022.05.010
    [2]WANG Hanzhuo, LI Fenghua. Fast algorithm for stochastic sound filed based on parabolic equation model embedded with polynomial chaos[J]. ACTA ACUSTICA, 2022, 47(2): 210-219. DOI: 10.15949/j.cnki.0371-0025.2022.02.005
    [3]ZHU Hanhao, XIAO Rui, ZHU Jun, XUE Yangyang, ZHANG Shizhao. Influence of internal solitary waves on sound propagation in three-dimensional shallow sea[J]. ACTA ACUSTICA, 2021, 46(3): 365-374. DOI: 10.15949/j.cnki.0371-0025.2021.03.005
    [4]LIU Bao, CHENG Guangli, WANG Deshi. Multi-frequency calculation method of improved Burton-Miller boundary equation[J]. ACTA ACUSTICA, 2019, 44(5): 865-873. DOI: 10.15949/j.cnki.0371-0025.2019.05.007
    [5]XU Chuanxiu, YANG Shie, PO Shengchun, ZHANG Haigang, TANG Jun, LIU Jiaqi. A three-dimensional parabolic equation using non-uniform depth and horizontal grids in ocean acoustics[J]. ACTA ACUSTICA, 2018, 43(4): 453-462. DOI: 10.15949/j.cnki.0371-0025.2018.04.005
    [6]ZHANG Yongbin, WANG Shulong, BI Chuanxing, ZHANG Xiaozheng. Study on the parabolic equation method and its starting field for predicting the insertion loss of sound barriers[J]. ACTA ACUSTICA, 2018, 43(1): 69-75. DOI: 10.15949/j.cnki.0371-0025.2018.01.008
    [7]YU Xiaotao, PENG Linhui, YU Gaokun. Spatial structure of temporal coherence for long range sound propagation in deep ocean with linear internal waves[J]. ACTA ACUSTICA, 2017, 42(3): 267-273. DOI: 10.15949/j.cnki.0371-0025.2017.03.002
    [8]XU Chuanxiu, PIAO Shengchun, YANG Shi'e, ZHANG Haigang, TANG Jun. A three-dimensional parabolic equation model using energy-conserving and higher-order Padé approximant in underwater acoustics[J]. ACTA ACUSTICA, 2016, 41(4): 477-484. DOI: 10.15949/j.cnki.0371-0025.2016.04.004
    [9]SONG Jun, PENG Zhaohui. On far-field approximation of parabolic equation[J]. ACTA ACUSTICA, 2006, 31(1): 85-90. DOI: 10.15949/j.cnki.0371-0025.2006.01.014
    [10]PENG Chaohui, ZHANG Renhe. On study of the theory and algorithm of the three dimensional coupled mode-parabolic equation[J]. ACTA ACUSTICA, 2005, 30(2): 97-102. DOI: 10.15949/j.cnki.0371-0025.2005.02.001

Catalog

    Article Metrics

    Article views (82) PDF downloads (37) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return