EI / SCOPUS / CSCD 收录

中文核心期刊

LUO Qiao, HE Yansong, QIU Maochang, ZHANG Zhifei, TAN Kanlun. Subjective and objective evaluation of seated human discomfort caused by mechanical shocks[J]. ACTA ACUSTICA, 2024, 49(2): 238-245. DOI: 10.12395/0371-0025.2023207
Citation: LUO Qiao, HE Yansong, QIU Maochang, ZHANG Zhifei, TAN Kanlun. Subjective and objective evaluation of seated human discomfort caused by mechanical shocks[J]. ACTA ACUSTICA, 2024, 49(2): 238-245. DOI: 10.12395/0371-0025.2023207

Subjective and objective evaluation of seated human discomfort caused by mechanical shocks

More Information
  • PACS: 
    • 43.80  (Bioacoustics)
  • Received Date: August 31, 2023
  • Revised Date: November 04, 2023
  • In order to reduce the deviation caused by subjective randomness, the maximum difference scaling (MaxDiff) method is introduced to carry out the subjective evaluation test of sitting human discomfort under mechanical impact, and the comfort is evaluated by objective indexes combining the acceleration and inertia force. Sixteen mechanical shocks with different nominal frequencies or displacement amplitudes were reconstructed. The subjective scores of 12 subjects under different mechanical impact signals were obtained using the MaxDiff method. The acceleration sensor and the force plate are used to obtain the objective data, so as to extract the peak value, peak to peak value, vibration dose value (VDV), maximum transient vibration value (MTVV) and other objective evaluation indexes. The correlation analysis and linear regression fitting are used to analyze the subjective and objective correlation. MaxDiff scores show that with the increase of nominal frequency and displacement amplitude of mechanical impact signal, human comfort becomes worse. Correlation analysis shows that there is a great correlation between subjective score and objective indexes. Except for the VDV, the correlation coefficients of objective indexes and subjective score are all around 0.9. The linear fitting regression results show that the peak value, peak to peak value and MTVV of acceleration and inertia force can be used as objective indexes to characterize the comfort of sitting human body under impact conditions, with the former being more suitable.

  • [1]
    陈良松, 宋俊, 邱毅, 等. 汽车座椅振动舒适性主客观测试及关联性分析. 汽车工程, 2021; 43(8): 1263−1269 DOI: 10.19562/j.chinasae.qcgc.2021.08.019
    [2]
    谢张军, 张志飞, 徐中明, 等. 面向人体振动响应的ISD悬架座椅性能分析. 振动与冲击, 2018; 37(14): 180−187 DOI: 0.13465/j.cnki.jvs.2018.14.025
    [3]
    Patelli G, Morioka M, Griffin M J. Frequency-dependence of discomfort caused by vibration and mechanical shocks. Ergonomics, 2018; 61(8): 1102−1115 DOI: 10.1080/00140139.2018.1429674
    [4]
    Looze M D, Kuijt-Evers L, Dieen J V. Sitting comfort and discomfort and the relationships with objective measures. Ergonomics, 2003; 46(10): 985−997 DOI: 10.1080/0014013031000121977
    [5]
    Ahn S J, Griffin M J. Effects of frequency, magnitude, damping, and direction on the discomfort of vertical whole-body mechanical shocks. J. Sound Vib., 2008; 311(1-2): 485−497 DOI: 10.1016/j.jsv.2007.09.026
    [6]
    Li J D, Huang Y. The effects of the duration on the subjective discomfort of a rigid seat and a cushioned automobile seat. Int. J. Ind. Ergon., 2020; 79: 103007 DOI: 10.1016/j.ergon.2020.103007
    [7]
    Huang Y, Griffin M J. Comparison of absolute magnitude estimation and relative magnitude estimation for judging the subjective intensity of noise and vibration. Appl. Acoust., 2014; 77: 82−88 DOI: 10.1016/j.apacoust.2013.10.003
    [8]
    Niekerk J L V, Pielemeier W J, Greenberg J A. The use of seat effective amplitude transmissibility (SEAT) values to predict dynamic seat comfort. J. Sound Vib., 2003; 260(5): 867−888 DOI: 10.1016/S0022-460X(02)00934-3
    [9]
    贺岩松, 涂梨娥, 徐中明, 等. 支持向量机在汽车加速车内声品质预测中的应用. 汽车工程, 2015; 37(11): 1328−1333 DOI: 10.3969/j.issn.1000-680X.2015.11.016
    [10]
    毛东兴, 高亚丽, 俞悟周, 等. 声品质主观评价的分组成对比较法研究. 声学学报, 2005; 30(6): 515−520 DOI: 10.3321/j.issn:0371-0025.2005.06.006
    [11]
    黄煜, 陈克安, 闫靓, 等. 自适应分组成对比较法: 原理及种子的选择. 声学学报, 2008; 33(5): 443−449 DOI: 10.3321/j.issn:0371-0025.2008.05.010
    [12]
    Potoglou D, Burge P, Flynn T, et al. Best–worst scaling vs. discrete choice experiments: An empirical comparison using social care data. Social Sci. Med., 2011; 72(10): 1717−1727 DOI: 10.1016/j.socscimed.2011.03.027
    [13]
    Lee C C, Cheng H K, Cheng H H. An empirical study of mobile commerce in insurance industry: Task–technology fit and individual differences. Decis. Support Syst., 2007; 43(1): 95−110 DOI: 10.1016/j.dss.2005.05.008
    [14]
    Bir C, Delgado M, Widmar N. Development, implementation, and evaluation of a more efficient method of best-worst scaling data collection. Agric. Resour. Econ. Rev., 2022; 51(1): 178−201 DOI: 10.1017/age.2021.27
    [15]
    张志飞, 路晓辉, 高开展, 等. 基于最大差异测量法的汽车座椅坐垫舒适性探讨. 公路交通科技, 2023; 40(2): 230−237 DOI: 10.3969/j.issn.1002-0268.2023.02.028
    [16]
    Heo C Y, Kim B, Park K, et al. A comparison of Best-Worst Scaling and Likert Scale methods on peer-to-peer accommodation attributes. J. Bus. Res., 2022; 148: 368−377 DOI: 10.1016/j.jbusres.2022.04.064
    [17]
    Banks R D, Brinkley J W, Allnutt R, et al. Human response to acceleration. In: Fundamentals of aerospace medicine, Philadelphia: Lippincott Williams & Wilkins, 2008: 83–109
    [18]
    International Organization for Standardization. Mechanical vibration and shock—evaluation of human exposure to whole-body vibration, Part 1: General requirement: ISO 2631-1. 1997
    [19]
    Zhou Z, Griffin M J. Response of the seated human body to whole-body vertical vibration: discomfort caused by mechanical shocks. Ergonomics, 2016; 60(3): 347−357 DOI: 10.1080/00140139.2014.898799
    [20]
    Patelli G, Griffin M J. Effects of seating on the discomfort caused by mechanical shocks: Measurement and prediction of SEAT values. Appl. Ergon., 2019; 74: 134−144 DOI: 10.1016/j.apergo.2018.08.003
    [21]
    Nawayseh N, Griffin M J. Tri-axial forces at the seat and backrest during whole-body fore-and-aft vibration. J. Sound Vib., 2005; 281(3-5): 921−942 DOI: 10.1016/j.jsv.2004.02.047
    [22]
    Beard G F, Griffin M J. Discomfort of seated persons exposed to low frequency lateral and roll oscillation: Effect of seat cushion. Appl. Ergon., 2014; 45(6): 1547−1557 DOI: 10.1016/j.apergo.2014.05.002
    [23]
    Hollis G. The role of number of items per trial in best-worst scaling experiments. Behav. Res. Methods, 2020; 52(2): 694−722 DOI: 10.3758/s13428-019-01270-w
    [24]
    张录法, 黄姣姣, 王慧, 等. 优劣尺度法理论及应用研究述评. 统计与信息论坛, 2019; 34(3): 25−31 DOI: 10.3969/j.issn.1007-3116.2019.03.004
    [25]
    Long C K, Susanne M, Judit S, et al. Comparison of statistical analysis methods for object case best-worst scaling. J. Med. Econ., 2019; 22(6): 509−515 DOI: 10.1080/13696998.2018.1553781
    [26]
    Zheng G, Qiu Y, Griffin M J. Vertical and dual-axis vibration of the seated human body: Nonlinearity, cross-axis coupling, and associations between resonances in transmissibility and apparent mass. J. Sound Vib., 2012; 331(26): 5880−5894 DOI: 10.1016/j.jsv.2012.07.029
    [27]
    Mansfield N J, Griffin M J. Effects of posture and vibration magnitude on apparent mass and pelvis rotation during exposure to whole-body vertical vibration. J. Sound Vib., 2002; 253(1): 93−107 DOI: 10.1006/jsvi.2001.4251
    [28]
    Fairley T E, Griffin M J. The apparent mass of the seated human body: Vertical vibration. J. Biomech., 1989; 22(2): 81−94 DOI: 10.1016/0021-9290(89)90031-6
    [29]
    Huang Y, Zhang P, Liang S. Apparent mass of the seated human body during vertical vibration in the frequency range 2−100 Hz. Ergonomics, 2020; 63(9): 1150−1163 DOI: 10.1080/00140139.2020.1769744
    [30]
    高开展, 罗巧, 张志飞, 等. 基于体压分布的汽车座椅振动舒适性评价. 汽车工程, 2022; 44(12): 1936−1943 DOI: 10.19562/j.chinasae.qcgc.2022.12.015

Catalog

    Article Metrics

    Article views (78) PDF downloads (32) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return