Citation: | LIU Lianyun, CHU Zhigang. Rotational Doppler analysis and demultiplexing of acoustic vortices using a microphone array[J]. ACTA ACUSTICA, 2025, 50(2): 332-337. DOI: 10.12395/0371-0025.2023065 |
In order to solve the problems of both insufficient response at low frequencies and crosstalk suffered by the existing acoustic vortex demultiplexing method using a single rotating microphone, a method using a circular array of microphones is proposed to analyze the rotational Doppler effect and then demultiplex the acoustic vortex. The circular microphone array is used to extract the time-domain sound pressure signals received by a rotating observer, and the rotational Doppler shifts of the extracted signals are obtained. The acoustic vortex is then demultiplexed from the single spectrum at a certain speed and the multiple spectra within a certain speed range, respectively. The results show that the demultiplexing method using the single-spectrum suffers from the failures caused by the extreme Doppler effect and the equal Doppler shift, while the demultiplexing method using the multiple spectra has effectively solved the problems of insufficient response at low frequencies and crosstalk.
[1] |
Kilfoyle D B, Baggeroer A B. The state of the art in underwater acoustic telemetry. IEEE J. Oceanic Eng., 2000; 25(1): 4−27 DOI: 10.1109/48.820733
|
[2] |
梁彬, 程建春. 声波的“漩涡”——声学轨道角动量的产生、操控与应用. 物理, 2017; 46(10): 658−668 DOI: 10.7693/wl20171002
|
[3] |
陈友淦, 许肖梅. 人工智能技术在水声通信中的研究进展. 哈尔滨工程大学学报, 2020; 41(10): 1536−1544 DOI: 10.11990/jheu.202007110
|
[4] |
Baudoin M, Gerbedoen J C, Riaud A, et al. Folding a focalized acoustical vortex on a flat holographic transducer: miniaturized selective acoustical tweezers. Sci. Adv., 2019; 5(4): eaav1967 DOI: 10.1126/sciadv.aav1967
|
[5] |
Jiang X, Wang N, Zhang C, et al. Acoustic orbital angular momentum prism for efficient vortex perception. Appl. Phys. Lett., 2021; 118(7): 071901 DOI: 10.1063/5.0041398
|
[6] |
Marzo A, Caleap M, Drinkwater B W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of Mie particles. Phys. Rev. Lett., 2018; 120(4): 044301 DOI: 10.1103/PhysRevLett.120.044301
|
[7] |
卢苇, 孙浩, 蓝宇. 声轨道角动量水下发射与数据传输实验. 声学学报, 2020; 45(6): 936−944 DOI: 10.15949/j.cnki.0371-0025.2020.06.018
|
[8] |
聂斌, 袁飞, 陶少华, 等. 基于轨道角动量复用的声波通信特性及环形相控阵设计. 中南大学学报(自然科学版), 2022; 53(4): 1281−1290 DOI: 10.11817/j.issn.1672-7207.2022.04.013
|
[9] |
Huang H, Xie G, Yan Y, et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt. Lett., 2014; 39(2): 197−200 DOI: 10.1364/OL.39.000197
|
[10] |
Zhu L, Zhu G, Wang A, et al. 18 km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation. Opt. Lett., 2018; 43(8): 1890−1893 DOI: 10.1364/OL.43.001890
|
[11] |
Yan Y, Xie G, Lavery M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun., 2014; 5(1): 1−9 DOI: 10.1038/ncomms5876
|
[12] |
Chen C, Yang H. Shared secret key generation from signal fading in a turbulent optical wireless channel using common-transverse-spatial-mode coupling. Opt. Exp., 2018; 26(13): 16422−16441 DOI: 10.1364/OE.26.016422
|
[13] |
Ceperley P H. Rotating waves. Am. J. Phys., 1992; 60(10): 938−942 DOI: 10.1119/1.17020
|
[14] |
Santillan A O, Volke-Sepulveda K. A demonstration of rotating sound waves in free space and the transfer of their angular momentum to matter. Am. J. Phys., 2009; 77(3): 209−215 DOI: 10.1119/1.3056580
|
[15] |
郭忠义, 刘洪郡, 李晶晶, 等. 声涡旋信息应用研究进展. 物理学报, 2020; 69(24): 244301 DOI: 10.7498/aps.69.20200826
|
[16] |
Ren Y, Wang Z, Xie G, et al. Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing. Opt. Lett., 2015; 40(18): 4210−4213 DOI: 10.1364/OL.40.004210
|
[17] |
蔡明飞, 师芳芳, 孔超, 等. 基于多FPGA的超声相控阵数字波束形成器设计. 机械工程学报, 2016; 52(2): 70−75 DOI: 10.3901/JME.2016.02.070
|
[18] |
Shi C, Dubois M, Wang Y, et al. High-speed acoustic communication by multiplexing orbital angular momentum. Proc. Natl. Acad. Sci. U. S. A., 2017; 114(28): 7250−7253 DOI: 10.1073/pnas.1704450114
|
[19] |
Li X, Li Y, Ma Q, et al. Principle and performance of orbital angular momentum communication of acoustic vortex beams based on single-ring transceiver arrays. J. Appl. Phys., 2020; 127(12): 124902 DOI: 10.1063/1.5135991
|
[20] |
Guo G, Li X, Wang Q, et al. Spectrum decomposition-based orbital angular momentum communication of acoustic vortex beams using single-ring transceiver arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2020; 68(4): 1399−1407 DOI: 10.1109/TUFFC.2020.3034240
|
[21] |
Jiang X, Liang B, Cheng J C, et al. Twisted acoustics: Metasurface-enabled multiplexing and demultiplexing. Adv. Mater., 2018; 30(18): 1800257 DOI: 10.1002/adma.201800257
|
[22] |
Sun Z, Shi Y, Sun X, et al. Underwater acoustic multiplexing communication by pentamode metasurface. J. Phys. D, 2021; 54(20): 205303 DOI: 10.1088/1361-6463/abe43e
|
[23] |
Wu K, Liu J J, Ding Y J, et al. Metamaterial-based real-time communication with high information density by multipath twisting of acoustic wave. Nat. Commun., 2022; 13(1): 5171 DOI: 10.1038/s41467-022-32778-z
|
[24] |
Zhang C, Jiang X, He J, et al. Spatiotemporal acoustic communication by a single sensor via rotational Doppler effect. Adv. Sci., 2023; 10(10): 2206619 DOI: 10.1002/advs.202206619
|
[25] |
Cromb M, Gibson G M, Toninelli E, et al. Amplification of waves from a rotating body. Nat. Phys., 2020; 16(10): 1069−1073 DOI: 10.1038/s41567-020-0944-3
|
[26] |
Liu L, Yu Y, Hu J, et al. Experimental study of acoustic superradiance from a rotating absorber. J. Appl. Phys., 2022; 131(16): 164901 DOI: 10.1063/5.0086043
|
[27] |
Gibson G M, Toninelli E, Horsley S A, et al. Reversal of orbital angular momentum arising from an extreme Doppler shift. Proc. Natl. Acad. Sci. U. S. A., 2018; 115(15): 3800−3803 DOI: 10.1073/pnas.1720776115
|
[28] |
姚直象, 卫红凯, 孔晓鹏, 等. 水声探测与通信原理. 北京: 电子工业出版社, 2022: 4−12
|
[29] |
Lowis C R, Joseph P. Determining the strength of rotating broadband sources in ducts by inverse methods. J. Sound Vib., 2006; 295(3-5): 614−632 DOI: 10.1016/j.jsv.2006.01.031
|
[30] |
Herold G, Sarradj E. Microphone array method for the characterization of rotating sound sources in axial fans. Noise Control Eng. J., 2015; 63(6): 546−551 DOI: 10.3397/1/376348
|
[31] |
Ocker C, Pannert W. Imaging of broadband noise from rotating sources in uniform axial flow. AIAA J., 2017; 55(4): 1185−1193 DOI: 10.2514/1.J055309
|
[32] |
Ma W, Bao H, Zhang C, et al. Beamforming of phased microphone array for rotating sound source localization. J. Sound Vib., 2020; 467: 115064 DOI: 10.1016/j.jsv.2019.115064
|
[33] |
Liu L, Han Y, Zheng X, et al. Observation of the extreme Doppler shift of acoustic rotating waves in the time domain. J. Appl. Phys., 2021; 130(23): 234904 DOI: 10.1063/5.0076516
|
[34] |
Liu L, Cheng X, Zheng X, et al. Experimental and numerical study of the rotational Doppler shift in acoustic waves using static microphones. Phys. Fluids, 2022; 34(4): 047109 DOI: 10.1063/5.0087181
|