EI / SCOPUS / CSCD 收录

中文核心期刊

ZHANG Yuxiang, LIU Jiuling, LIU Minghua, YOU Ran, HE Shitang. Localized particle patterning via standing surface acoustic wave micromanipulation[J]. ACTA ACUSTICA, 2024, 49(3): 464-471. DOI: 10.12395/0371-0025.2023020
Citation: ZHANG Yuxiang, LIU Jiuling, LIU Minghua, YOU Ran, HE Shitang. Localized particle patterning via standing surface acoustic wave micromanipulation[J]. ACTA ACUSTICA, 2024, 49(3): 464-471. DOI: 10.12395/0371-0025.2023020

Localized particle patterning via standing surface acoustic wave micromanipulation

More Information
  • PACS: 
    • 43.38  (Transduction, acoustical devices for the generation and reproduction of sound)
    • 43.35  (Ultrasonics, quantum acoustics, and physical effects of sound)
  • Received Date: February 17, 2023
  • Revised Date: March 09, 2023
  • Available Online: May 08, 2024
  • The current method of micromanipulation using standing surface acoustic waves generates standing wave patterns across the full width of the microfluidic channel and lacks the ability to perform localized manipulations. This paper analyzes and quantifies techniques for generating and controlling localized particle patterns in acoustic micromanipulation structures using surface acoustic waves of short-pulse excitation. An analytical computational model is developed to study waveform propagation under short-pulse excitation, considering the contribution of each finger pair in the forked-finger transducer. Additionally, a full-section simulation model of the vertical surface acoustic wave micromanipulator is combined with the finite element method to study the time-averaged base displacement of the micromanipulator and changes in the acoustic field distribution when pulse delay and frequency modulation are applied to the excitation signal. To validate the theoretical model, the micromanipulator device is fabricated and experimentally tested. The results demonstrate that modifying the relative time delay and an effective pulse time of the excitation signal enables effective control of the position and width of the generated standing wave region in the acoustic field, with a positive linear correlation between the two parameters and consistency with both theoretical and simulation results.

  • [1]
    Ozcelik A, Rufo J, Guo F, et al. Acoustic tweezers for the life sciences. Nat. Methods, 2018; 15(12): 1021−1028 DOI: 10.1038/s41592-018-0222-9
    [2]
    董惠娟, 王敬轩, 李天龙. 声表面驻波在微流控领域的应用. 科技导报, 2020; 38(11): 131−140 DOI: 10.3981/j.issn.1000-7857.2020.11.015
    [3]
    蔡飞燕, 孟龙, 李飞, 等. 声操控微粒研究进展. 应用声学, 2018; 5(5): 655−663 DOI: 10.11684/j.issn.1000-310X.2018.05.008
    [4]
    蒋鹏, 孟龙, 蔡飞燕, 等. 基于声表面波的微操控技术研究进展. 集成技术, 2013; 2(5): 42−47 DOI: 10.12146/j.issn.2095-3135.201309008
    [5]
    Meng L, Cai F, Jiang P, et al. On-chip targeted single cell sonoporation with microbubble destruction excited by surface acoustic waves. Appl. Phys. Lett., 2014; 104(7): 073701 DOI: 10.1063/1.4865770
    [6]
    Meng L, Cai F, Zhang Z, et al. Transportation of single cell and microbubbles by phase-shift introduced to standing leaky surface acoustic waves. Biomicrofluidics, 2011; 5(4): 044104 DOI: 10.1063/1.3652872
    [7]
    Chen Y, Ding X, Steven Lin S C, et al. Tunable nanowire patterning using standing surface acoustic waves. ACS Nano, 2013; 7(4): 3306−3314 DOI: 10.1021/nn4000034
    [8]
    Shi J, Ahmed D, Mao X, et al. Acoustic tweezers: Patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip, 2009; 9(20): 2890−2895 DOI: 10.1039/b910595f
    [9]
    Ding X, Lin S C S, Kiraly B, et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. U. S. A., 2012; 109(28): 11105−11109 DOI: 10.1073/pnas.1209288109
    [10]
    Nguyen T D, Fu Y Q, Tran V T, et al. Acoustofluidic closed-loop control of microparticles and cells using standing surface acoustic waves. Sens. Actuators, B, 2020; 318: 128143 DOI: 10.1016/j.snb.2020.128143
    [11]
    Collins D J, Devendran C, Ma Z, et al. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves. Sci. Adv., 2016; 2(7): e1600089 DOI: 10.1126/sciadv.1600089
    [12]
    Wang Q, Riaud A, Zhou J, et al. Acoustic radiation force on small spheres due to transient acoustic fields. Phys. Rev. Appl., 2021; 15(4): 044034 DOI: 10.1103/PhysRevApplied.15.044034
    [13]
    Meng L, Cai F, Chen J, et al. Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves. Appl. Phys. Lett., 2012; 100(17): 173701 DOI: 10.1063/1.4704922
    [14]
    齐绍富, 蔡飞燕, 田振, 等. 基于一维声栅共振场的大规模微粒并行排列的实验研究. 物理学报, 2023; 72(2): 145−149 DOI: 10.7498/aps.72.20221793
    [15]
    王生庚, 易夕圆, 王振宇, 等. 利用体声波微流阱阵列捕获微米级颗粒. 声学学报, 2021; 46(3): 440−446 DOI: 10.15949/j.cnki.0371-0025.2021.03.013
    [16]
    臧雨宸, 林伟军, 苏畅, 等. 自由空间中球形粒子的负向声辐射力. 声学学报, 2022; 47(3): 379−393 DOI: 10.15949/j.cnki.0371-0025.2022.03.005
    [17]
    Settnes M, Bruus H. Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E, 2012; 85(1): 016327 DOI: 10.1103/PhysRevE.85.016327
    [18]
    Schülein F J R, Zallo E, Atkinson P, et al. Fourier synthesis of radiofrequency nanomechanical pulses with different shapes. Nat. Nanotechnol., 2015; 10(6): 512−516 DOI: 10.1038/nnano.2015.72
    [19]
    Taatizadeh E, Dalili A, Rellstab-Sánchez P I, et al. Micron-sized particle separation with standing surface acoustic wave—Experimental and numerical approaches. Ultrason. Sonochem., 2021; 76: 105651 DOI: 10.1016/j.ultsonch.2021.105651
    [20]
    Jiao Z J, Huang X Y, Nguyen N T. Scattering and attenuation of surface acoustic waves in droplet actuation. J. Phys. A: Math. Theor., 2008; 41(35): 355502 DOI: 10.1088/1751-8113/41/35/355502
    [21]
    Devendran C, Albrecht T, Brenker J, et al. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems. Lab Chip, 2016; 16(19): 3756−3766 DOI: 10.1039/C6LC00798H
  • Related Articles

    [1]ZHU Jilin, GAO Dongbao, ZENG Xinwu, XU Zhanglin, XIE Hanxiang. Investigation of manipulation stability of phase-modulating acoustic tweezer in standing wave[J]. ACTA ACUSTICA, 2024, 49(3): 449-457. DOI: 10.12395/0371-0025.2022189
    [2]LIU Yuechao, JIANG Genshan, YANG Yanfeng, KONG Qian. Motion characteristics of particles around the cylindrical tube in a standing wave sound field[J]. ACTA ACUSTICA, 2023, 48(2): 356-365. DOI: 10.15949/j.cnki.0371-0025.2023.02.008
    [3]TAN Peng, SUN Mei, QIN Jixing, YANG Desen. Geoacoustic inversion in shallow water by matching vertical particle velocity[J]. ACTA ACUSTICA, 2023, 48(1): 70-82. DOI: 10.15949/j.cnki.0371-0025.2023.01.002
    [4]ZANG Yuchen, LIN Weijun, SU Chang, WU Pengfei, CHANG Qin. The negative acoustic radiation force on a spherical particle in free space[J]. ACTA ACUSTICA, 2022, 47(3): 379-393. DOI: 10.15949/j.cnki.0371-0025.2022.03.005
    [5]MO Xiping, YU Jinghan. Modeling for beam pattern of unbaffled circular piston transducer[J]. ACTA ACUSTICA, 2019, 44(4): 751-755. DOI: 10.15949/j.cnki.0371-0025.2019.04.036
    [6]HE Xianzhong, XU Feng. Underwater acoustic imaging method that may be used for pattern recognition[J]. ACTA ACUSTICA, 2019, 44(3): 345-352. DOI: 10.15949/j.cnki.0371-0025.2019.03.009
    [7]LIN Yutong, QIN Peng. The inertial cavitation characteristics of SonoVue microbubbles mediated by pulsed ultrasound[J]. ACTA ACUSTICA, 2018, 43(2): 202-208. DOI: 10.15949/j.cnki.0371-0025.2018.02.009
    [8]LI Yunsi, SU Mingxu, YANG Huinan, FAN Fengxian, CAI Xiaoshu. Simulation of ultrasonic attenuation in the elastic mixing particle system[J]. ACTA ACUSTICA, 2017, 42(5): 586-592. DOI: 10.15949/j.cnki.0371-0025.2017.05.009
    [9]CHEN Shouhu, ZHAO Lianjun, CAO Jianguo, GAO Bing, ZHU Mo, HU Yuan, MA Li. Analytical study on acoustic interference pattern in shallow water[J]. ACTA ACUSTICA, 2017, 42(2): 129-142. DOI: 10.15949/j.cnki.0371-0025.2017.02.001
    [10]YIN Jingwei, ZHANG Xiao, ZHU Guangping, TANG Shengyu, SUN Hui. Parametric array differential Pattern time delay shift coding underwater acoustic communication in the under-ice environment[J]. ACTA ACUSTICA, 2017, 42(1): 48-52. DOI: 10.15949/j.cnki.0371-0025.2017.01.006
  • Cited by

    Periodical cited type(1)

    1. 潘美晴,付洁,张灵丽. 中国画与音乐深度融合的活动探究. 幼儿美术. 2022(04): 23-28 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (85) PDF downloads (34) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return