EI / SCOPUS / CSCD 收录

中文核心期刊

JING Lianyou, XUE Zhekai, HE Chengbing, SHI Wentao, YIN Hongxi. A mobile underwater acoustic communication method based on orthogonal time frequency space modulation[J]. ACTA ACUSTICA, 2024, 49(2): 308-317. DOI: 10.12395/0371-0025.2022190
Citation: JING Lianyou, XUE Zhekai, HE Chengbing, SHI Wentao, YIN Hongxi. A mobile underwater acoustic communication method based on orthogonal time frequency space modulation[J]. ACTA ACUSTICA, 2024, 49(2): 308-317. DOI: 10.12395/0371-0025.2022190

A mobile underwater acoustic communication method based on orthogonal time frequency space modulation

More Information
  • PACS: 
    • 43.30  (Underwater sound)
    • 43.60  (Acoustic signal processing)
  • Received Date: December 28, 2022
  • Revised Date: May 27, 2023
  • To improve the reliability of mobile underwater acoustic (UWA) communication systems, a mobile underwater acoustic communication method based on orthogonal time frequency space (OTFS) modulation is proposed. Firstly, a low complexity cross domain Turbo iterative equalization algorithm is designed to deal with long delay spread of UWA channel, which performs minimum mean square error (MMSE) equalization on the received signal in the time domain, and transfers the external information to the delay Doppler domain for decode. Next, the decoded soft information of the delay Doppler domain is fed back to the time domain as a priori information for the next time domain equalization. From this, the iterative detection of equalization and decoding is implemented. In addition, in order to solve the problem of excessive complexity, a low complexity computation algorithm is adopted. The algorithm first uses diagonal elements of matrix to obtain initial estimation, then converts the matrix inversion problem into solving the error between the initial estimation and the accurate value, so that low complexity calculations can be achieved through iterative estimation of the error vector. The results of lake experiments show that the proposed method can achieve reliable performance at a maximum moving speed of 4 knots.

  • [1]
    王海斌, 汪俊, 台玉朋, 等. 水声通信技术研究进展与技术水平现状. 信号处理, 2019; 35(9): 1441−1449 DOI: 10.16798/j.issn.1003-0530.2019.09.001
    [2]
    Huang J, Wang H, He C, et al. Underwater acoustic communication and the general performance evaluation criteria. Front. Inf. Technol. Electron. Eng., 2018; 19(8): 951−971 DOI: 10.1631/FITEE.1700775
    [3]
    Stojanovic M, Catipovic J, Proakis J G. Adaptive multichannel combining and equalization for underwater acoustic communication. J. Acoust. Soc. Am., 1993; 94(3): 1621−1631 DOI: 10.1121/1.408135
    [4]
    朱维庆, 朱敏, 武岩波, 等. 载人潜水器“蛟龙”号的水声通信信号处理. 声学学报, 2012; 37(6): 565−573 DOI: 10.15949/j.cnki.0371-0025.2012.06.001
    [5]
    Li B, Zhou S, Stojanovic M, et al. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts. IEEE J. Oceanic Eng., 2008; 33(2): 198−209 DOI: 10.1109/JOE.2008.920471
    [6]
    尹艳玲, 乔钢, 刘凇佐. 正交频分复用无源时间反转信道均衡方法研究. 声学学报, 2015; 40(3): 469−476 DOI: 10.15949/j.cnki.0371-0025.2015.03.015
    [7]
    乔钢, 王巍, 刘凇佐, 等. 改进的多输入多输出正交频分复用水声通信判决反馈信道估计算法. 声学学报, 2016; 41(1): 94−104 DOI: 10.15949/j.cnki.0371-0025.2016.01.012
    [8]
    Zheng Y R, Xiao C, Yang T C, et al. Frequency-domain channel estimation and equalization for shallow-water acoustic communications. Phys. Commun., 2010; 3(1): 48−63 DOI: 10.1016/j.phycom.2009.08.010
    [9]
    秦晔, 鄢社锋, 徐立军, 等. 用于单载波频域均衡水声通信的可分近似稀疏信道估计. 声学学报, 2018; 43(4): 526−537 DOI: 10.15949/j.cnki.0371-0025.2018.04.012
    [10]
    Shi W, He C, Dang Q, et al. Single-carrier with index modulation for underwater acoustic communications. Appl. Acoust., 2021; 172: 107572 DOI: 10.1016/j.apacoust.2020.107572
    [11]
    Tadayon A, Stojanovic M. Low-complexity superresolution frequency offset estimation for high data rate acoustic OFDM systems. IEEE J. Oceanic Eng., 2019; 44(4): 932−942 DOI: 10.1109/JOE.2018.2869657
    [12]
    Tadayon A, Stojanovic M. Iterative sparse channel estimation and spatial correlation learning for multichannel acoustic OFDM systems. IEEE J. Oceanic Eng., 2019; 44(4): 820−836 DOI: 10.1109/JOE.2019.2932662
    [13]
    Hadani R, Rakib S, Tsatsanis M, et al. Orthogonal time frequency space modulation. 19-22th Wireless Communications and Networking Conference, IEEE, San Francisco, USA, 2017
    [14]
    Wei Z, Yuan W, Li S, et al. Orthogonal time-frequency space modulation: A promising next-generation waveform. IEEE Wireless Commun., 2021; 28(4): 136−144 DOI: 10.1109/MWC.001.2000408
    [15]
    Raviteja P, Phan K T, Hong Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation. IEEE Trans. Wireless Commun., 2018; 17(10): 6501−6515 DOI: 10.1109/TWC.2018.2860011
    [16]
    Yuan Z, Liu F, Yuan W, et al. Iterative detection for orthogonal time frequency space modulation with unitary approximate message passing. IEEE Trans. Wireless Commun., 2022; 21(2): 714−725 DOI: 10.1109/TWC.2021.3097173
    [17]
    Zhang Y, Zhang Q, He C, et al. Channel estimation for OTFS system over doubly spread sparse acoustic channels. China Commun., 2023; 20(1): 50−65 DOI: 10.23919/JCC.2023.01.005
    [18]
    Yuan W, Wei Z, Yuan J, et al. A simple variational bayes detector for orthogonal time frequency space (OTFS) modulation. IEEE Trans. Veh. Technol., 2020; 69(7): 7976−7980 DOI: 10.1109/TVT.2020.2991443
    [19]
    Li S, Yuan J, Wei Z, et al. Hybrid MAP and PIC detection for OTFS modulation. IEEE Trans. Veh. Technol., 2021; 70(7): 7193−7198 DOI: 10.1109/TVT.2021.3083181
    [20]
    Jing L, Wang H, He C, et al. Two dimensional adaptive multichannel decision feedback equalization for OTFS system. IEEE Commun. Lett., 2021; 25(3): 840−844 DOI: 10.1109/LCOMM.2020.3039982
    [21]
    Tiwari S, Das S S, Rangamgari V. Low complexity LMMSE receiver for OTFS. IEEE Commun. Lett., 2019; 23(12): 2205−2209 DOI: 10.1109/LCOMM.2019.2945564
    [22]
    Li S, Yuan W, Wei Z, et al. Cross domain iterative detection for orthogonal time frequency space modulation. IEEE Trans. Wireless Commun., 2022; 21(4): 2227−2242 DOI: 10.1109/TWC.2021.3110125
    [23]
    Mandloi M, Bhatia V. Error recovery based low-complexity detection for uplink massive MIMO systems. IEEE Wireless Commun. Lett., 2017; 6(3): 302−305 DOI: 10.1109/LWC.2017.2677905
    [24]
    Raviteja P, Hong Y, Viterbo E, et al. Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS. IEEE Trans. Veh. Technol., 2019; 68(1): 957−961 DOI: 10.1109/TVT.2018.2878891
    [25]
    Thaj T, Viterbo E. Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems. IEEE Trans. Veh. Technol., 2020; 69(12): 15606−15622 DOI: 10.1109/TVT.2020.3044276
  • Related Articles

    [1]TONG Wentao, GE Wei, YIN Jingwei, HAN Xiao, LIN Yujia. Block-wise sparse equalizer for underwater acoustic single-carrier communication[J]. ACTA ACUSTICA, 2025, 50(2): 511-524. DOI: 10.12395/0371-0025.2024076
    [2]DU Shanwen, XIE Bosun, LIU Ding. A timbre equalization method for horizontal Ambisonics signal mixing with nonuniform loudspeaker configuration[J]. ACTA ACUSTICA, 2025, 50(2): 346-361. DOI: 10.12395/0371-0025.2024203
    [3]FANG Tao, HUA Bo, WEI Jiali, WANG Kai, LIU Jin, WANG Biao. Non-cooperative underwater acoustic OFDM intra-class modulation recognition based on subcarrier channel model blind equalization[J]. ACTA ACUSTICA, 2024, 49(5): 1061-1072. DOI: 10.12395/0371-0025.2023059
    [4]LIU Lu, ZHENG Rui. A bidirectional iterative equalization algorithm for underwater acoustic communication based on sparse adaptive filtering[J]. ACTA ACUSTICA, 2024, 49(5): 1041-1050. DOI: 10.12395/0371-0025.2023104
    [5]ZHAO Yanfeng, TONG Feng, MA Bole, ZHOU Yuehai, YANG Xiaoyu. Multipath-cluster-wise joint equalization method for long-range deep-sea single-element underwater acoustic communication[J]. ACTA ACUSTICA, 2024, 49(4): 764-773. DOI: 10.12395/0371-0025.2024038
    [6]WANG Kai, WU Lixin, ZHANG Xuedong, ZHANG Renhe. Bidirectional turbo equalizer with weighted feedback for underwater acoustic communication[J]. ACTA ACUSTICA, 2021, 46(6): 835-846. DOI: 10.15949/j.cnki.0371-0025.2021.06.006
    [7]TAI Yupeng, WANG Haibin, WANG Jun, YANG Yang. Joint equalization and decoding scheme for underwater acoustic communications using spinal code[J]. ACTA ACUSTICA, 2018, 43(6): 894-904. DOI: 10.15949/j.cnki.0371-0025.2018.06.003
    [8]XI Junyi, YAN Shefeng, XU Lijun, TIAN Jing. Bidirectional turbo equalization for underwater acoustic communications[J]. ACTA ACUSTICA, 2018, 43(5): 771-778. DOI: 10.15949/j.cnki.0371-0025.2018.05.006
    [9]QIN Ye, YAN Shefeng, XU Lijun, HOU Chaohuan. Sparse channel estimation using separable approximation for underwater acoustic sc-fde communications[J]. ACTA ACUSTICA, 2018, 43(4): 526-537. DOI: 10.15949/j.cnki.0371-0025.2018.04.012
    [10]YUAN Fei, LI Wencong, CHENG En. Synchronization detection method for symmetrical triangular linear frequency modulation in underwater acoustic communication[J]. ACTA ACUSTICA, 2018, 43(2): 178-188. DOI: 10.15949/j.cnki.0371-0025.2018.02.007

Catalog

    Article Metrics

    Article views (235) PDF downloads (106) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return