EI / SCOPUS / CSCD 收录

中文核心期刊

QU Songyue, GUO Lianghao, DONG Ge. Direction of arrival estimation method jointing channel randomly shielding and deconvolution for a horizontal array[J]. ACTA ACUSTICA, 2024, 49(1): 1-15. DOI: 10.12395/0371-0025.2022159
Citation: QU Songyue, GUO Lianghao, DONG Ge. Direction of arrival estimation method jointing channel randomly shielding and deconvolution for a horizontal array[J]. ACTA ACUSTICA, 2024, 49(1): 1-15. DOI: 10.12395/0371-0025.2022159

Direction of arrival estimation method jointing channel randomly shielding and deconvolution for a horizontal array

More Information
  • PACS: 
    • 43.30  (Underwater sound)
    • 43.60  (Acoustic signal processing)
  • Received Date: November 28, 2022
  • Revised Date: February 02, 2023
  • Available Online: January 04, 2024
  • The deconvolved conventional beamforming (dCv) algorithm produces high-energy pseudo-signal characteristics in sidelobe positions when there is a mismatch at the element position. To address this issue, a direction of arrival estimation method jointing channel randomly shielding and deconvolution (RS-DBF) algorithm is proposed. When calculating the weighted vectors in different directions, this method randomly shields a certain number of elements while keeping the array aperture unchanged. This method can maintain the structure of the point spread function dictionary matrix near the diagonal and introduce noise in other areas of the matrix to suppress the generation of pseudo-signal characteristics. Simulations have shown that within the working range, RS-DBF can significantly suppress background energy and improve the peak-to-background contrast of target signals compared to dCv. In addition, the excellent performance of RS-DBF in suppressing background energy and achieving target signal detection is further verified by using SWellEx96 experimental data.

  • [1]
    Capon J. High-resolution frequency-wave number spectrum analysis. Proc. IEEE, 1969; 57(8): 1408−1418 DOI: 10.1109/PROC.1969.7278
    [2]
    Schmidt R, Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag., 1986; 34(3): 276−280 DOI: 10.1109/TAP.1986.1143830
    [3]
    Griffiths L J, Jim C W. An alternative approach to linearly constrained adaptive beamforming. IEEE Trans. Antennas Propag., 1982; 30(1): 27−34 DOI: 10.1109/TAP.1982.1142739
    [4]
    Nsiri B, Chonavel T, Boucher J M, et al. Blind submarine seismic deconvolution for long source wavelets. IEEE J. Oceanic Eng., 2007; 32(3): 729−743 DOI: 10.1109/JOE.2007.899408
    [5]
    Yardibi T, Zawodny N S, Li J. Comparison of microphone array processing techniques for aeroacoustic measurements. Int. J. Aeroacoust., 2010; 9(6): 733−762 DOI: 10.1260/1475-472X.9.6.733
    [6]
    彭亚丽, 张鲁, 张钰, 等. 基于深度反卷积神经网络的图像超分辨率算法. 软件学报, 2018; 29(4): 926−934 DOI: 10.13328/j.cnki.jos.005407
    [7]
    Zhang K, Zuo W M, Chen Y J, et al. Beyond gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process., 2017; 26(7): 3142−3155 DOI: 10.1109/TIP.2017.2662206
    [8]
    Yang T C. Deconvolved conventional beamforming for a horizontal line array. IEEE J. Oceanic Eng., 2018; 43(1): 160−172 DOI: 10.1109/JOE.2017.2680818
    [9]
    Richardson W H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am., 1972; 62(1): 55−59 DOI: 10.1364/JOSA.62.000055
    [10]
    Lucy L B. An iterative technique for the rectification of observed distributions. Astron. J., 1974; 79: 745−754 DOI: 10.1086/111605
    [11]
    Sun D, Ma C, Mei J, et al. The deconvolved conventional beamforming for non-uniform line arrays. OCEANS 2018, IEEE, Kobe, Japan, 2018
    [12]
    Wang L, Zhao H. Deconvolved conventional beamforming and uncertainty analysis for a difference coarray. OCEANS 2021, IEEE, San Diego, CA, USA, 2021
    [13]
    Ye Z, Yang T C. Deconvolved conventional beamforming for a coprime array. OCEANS 2019, IEEE, Marseille, France, 2019
    [14]
    Yang T C. Performance analysis of superdirectivity of circular arrays and implications for sonar systems. IEEE J. Oceanic Eng., 2019; 44(1): 156−166 DOI: 10.1109/JOE.2018.2801144
    [15]
    梁国龙, 马威, 范展, 等. 矢量声纳高速运动目标稳健高分辨方位估计. 物理学报, 2013; 62(14): 144302 DOI: 10.7498/aps.62.144302
    [16]
    Ma S H, Yang T C. The effect of elevation angle on bearing estimation for array beamforming in shallow water. Global Oceans 2020, IEEE, Biloxi, MS, USA, 2020
    [17]
    Duan W, Sun C, Liu X H, et al. DOA estimation of arc arrays using deconvolution with shift-variant PSF. Global Oceans 2020, IEEE, Biloxi, MS, USA, 2020
    [18]
    梅继丹, 石文佩, 马超, 等. 近场反卷积聚焦波束形成声图测量. 声学学报, 2020; 45(1): 15−28 DOI: 10.15949/j.cnki.0371-0025.2020.01.002
    [19]
    Ehrenfried K, Koop L. Comparison of iterative deconvolution algorithms for the mapping of acoustic sources. AIAA J., 2007; 45(7): 1584−1595 DOI: 10.2514/1.26320
    [20]
    褚志刚, 杨洋. 基于非负最小二乘反卷积波束形成的发动机噪声源识别. 振动与冲击, 2013; 32(23): 75−81 DOI: 10.3969/j.issn.1000-3835.2013.23.014
    [21]
    孙大军, 马超, 梅继丹, 等. 基于非负最小二乘的矢量阵反卷积波束形成方法. 哈尔滨工程大学学报, 2019; 40(7): 1217−1223 DOI: 10.11990/jheu.201811059
    [22]
    Yardibi T, Li J, Stoica P, et al. Sparsity constrained deconvolution approaches for acoustic source mapping. J. Acoust. Soc. Am., 2008; 123(5): 2631−2642 DOI: 10.1121/1.2896754
    [23]
    Brooks T F, Humpherys W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays. J. Sound Vib., 2006; 294: 856−879 DOI: 10.1016/j.jsv.2005.12.046
    [24]
    Chu N, Picheral J, Mohammad-djafari A, et al. A robust super-resolution approach with sparsity constraint in acoustic imaging. Appl. Acoust., 2014; 76: 197−208 DOI: 10.1016/j.apacoust.2013.08.007
    [25]
    刘与涵, 董金鑫, 郭良浩, 等. 深海声影区稀疏时延估计与声源测距. 声学学报, 2022; 47(4): 417−431 DOI: 10.15949/j.cnki.0371-0025.2022.04.007
    [26]
    杨洋, 褚志刚. 高性能波束形成声源识别方法研究综述. 机械工程学报, 2021; 57(24): 166−183 DOI: 10.3901/JME.2021.24.166
    [27]
    Sijtsma P. CLEAN based on spatial source coherence. Int. J. Aeroacoust., 2007; 6(4): 357−374 DOI: 10.1260/147547207783359459
    [28]
    Moulden B, Kingdom F, Gatley L F. The standard deviation of luminance as a metric for contrast in random-dot images. Perception, 1990; 19(1): 79−101 DOI: 10.1068/p190079
    [29]
    Hursky P, Hodgkiss W S, Kuperman W A. Matched field processing with data-derived modes. J. Acoust. Soc. Am., 2001; 109(4): 1355−1366 DOI: 10.1121/1.1353592
  • Related Articles

    [1]CUI Wenting, MEI Jidan, SUN Dajun, HUANG Tianfeng, WANG Biying. A broadband wavenumber domain deconvolution beamforming grating lobe suppression method for sparse linear arrays[J]. ACTA ACUSTICA, 2025, 50(1): 109-120. DOI: 10.12395/0371-0025.2023085
    [2]HUANG Jianli, WANG Yu, GONG Zaixiao, WANG Jun, WANG Haibin. Beam-domain deconvolution beamforming algorithm enhanced by compressive sensing[J]. ACTA ACUSTICA, 2025, 50(1): 97-108. DOI: 10.12395/0371-0025.2023135
    [3]YANG Zehui, NIE Weihang, CHENG Gaofeng, WU Yaozhen, XU Ji, ZHAO Qingwei, YAN Yonghong. Total variation constrained deconvolved conventional beamforming algorithm for azimuthal spectral estimation[J]. ACTA ACUSTICA, 2025, 50(1): 68-76. DOI: 10.12395/0371-0025.2023173
    [4]WANG Caizhi, CHEN Huawei. Sparse array design for the Laguerre polynomial beamformers[J]. ACTA ACUSTICA. DOI: 10.12395/0371-0025.2024268
    [5]WANG Zhenzhu, WANG Wenbo, LI He, REN Qunyan, GUO Shengming. Direction of arrival estimation using a horizontal array with beamforming domain feature fusion in shallow water[J]. ACTA ACUSTICA, 2024, 49(5): 939-955. DOI: 10.12395/0371-0025.2023029
    [6]HAN Mingqian, GUO Junyuan. Three-dimensional beamforming with the scattering of spherical shell for inclined small aperture array of vector sensors[J]. ACTA ACUSTICA, 2024, 49(3): 513-532. DOI: 10.12395/0371-0025.2022173
    [7]WANG Yujie, LI Zigao, CHI Cheng, JU Donghao, ZHANG Chunhua. Single vector hydrophone time-domain deconvolution bearing estimation method based on combined second-order statistics[J]. ACTA ACUSTICA, 2023, 48(4): 656-667. DOI: 10.15949/j.cnki.0371-0025.2023.04.003
    [8]YU Yun, LING Qing, CHEN Yang, GUO Kun, YU Fei. Steering vector random error modification robust beamforming[J]. ACTA ACUSTICA, 2023, 48(2): 312-318. DOI: 10.15949/j.cnki.0371-0025.2023.02.010
    [9]LIU Jingben, YAN Chao, GUO Lianghao, DONG Ge, DUAN Zhengchen. Fast calculation method of adaptive beamforming for curved-surface array[J]. ACTA ACUSTICA, 2021, 46(6): 847-862. DOI: 10.15949/j.cnki.0371-0025.2021.06.007
    [10]LIANG Guolong, QIU Longhao, ZOU Nan. A sparse signal reconstruction perspective for hydrophone array shape calibration[J]. ACTA ACUSTICA, 2017, 42(6): 677-684. DOI: 10.15949/j.cnki.0371-0025.2017.06.005
  • Cited by

    Periodical cited type(1)

    1. 王振波,井中武,张昊楠,刘恺忻. 阵列流形向量映射的虚拟稀疏阵测向方法. 应用科技. 2024(05): 47-52 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (482) PDF downloads (192) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return