Citation: | CHEN Changxiong, PENG Zilong, SONG Hao, FAN Jun, XUE Yaqiang. Fast prediction method of full-space bistatic scattering sound field of underwater stiffened double cylindrical shell[J]. ACTA ACUSTICA, 2024, 49(1): 78-88. DOI: 10.12395/0371-0025.2022157 |
A fast prediction method is presented for the full-space bistatic scattering sound field of the underwater stiffened double cylindrical shell. The scattering sound field is represented as the product of the acoustic scattering transfer function and the sound source density function. The target surface grid information and a small amount of simulation or experimentation multistatic scattering sound pressure data are used as known information to forecast other bistatic scattering sound fields with the help of numerical integration, matrix theory, and least squares method. The scattered sound pressure data from simulation of the finite element method (FEM) and experimental tests are used as input to calculate the multistatic scattered sound field of the underwater stiffened double cylindrical shell, respectively. The calculated results are compared with those calculated exclusively by the FEM, and the effects of different input data and calculation frequencies on the calculation results are discussed. The results show that the proposed method can predict the full-space bistatic scattered sound field of the target when the surface structure and part of the scattered sound field data are known. The greater amount of known scattered sound pressure data and lower computational frequency lead to higher prediction accuracy.
[1] |
Faran J J. Sound scattering by solid cylinders and spheres. J. Acoust. Soc. Am., 1951; 23(4): 405−418 DOI: 10.1121/1.1906780
|
[2] |
Flax L. Theory of elastic resonance excitation by sound scattering. J. Acoust. Soc. Am., 1978; 63(3): 723−731 DOI: 10.1121/1.381780
|
[3] |
Überall H. Relation between creeping waves and normal modes of vibration of a curved body. J. Acoust. Soc. Am., 1977; 61(3): 711−715 DOI: 10.1121/1.381347
|
[4] |
Überal H, Doolittle R D, McNicholas J V. Use of sound pulses for a study of circumferential waves. J. Acoust. Soc. Am., 1966; 39(3): 564−578 DOI: 10.1121/1.1909929
|
[5] |
郑国垠, 范军, 汤渭霖. 充水有限长圆柱薄壳声散射: I 理论. 声学学报, 2009; 34(6): 490−497 DOI: 10.3321/j.issn:0371-0025.2009.06.002
|
[6] |
郑国垠, 范军, 汤渭霖. 充水有限长圆柱薄壳声散射: II 实验. 声学学报, 2010; 35(1): 31−37 DOI: 10.15949/j.cnki.0371-0025.2010.01.002
|
[7] |
范威, 郑国垠, 范军. 充水圆柱壳声散射的环绕波分析. 声学学报, 2010; 35(4): 419−426 DOI: 10.15949/j.cnki.0371-0025.2010.04.003
|
[8] |
Waterman P C. New formulation of acoustic scattering. J. Acoust. Soc. Am., 2005; 45(6): 1417−1429 DOI: 10.1121/1.1911619
|
[9] |
卓琳凯, 范军, 汤渭霖. FEM-BEM 耦合方法分析弹性目标的声散射问题. 上海交通大学学报, 2009; 43(8): 1258−1261 DOI: 10.3321/j.issn:1006-2467.2009.08.015
|
[10] |
Schneider J B, Wagner C L, Broschat S L. Implementation of transparent sources embedded in acoustic finite-difference time-domain grids. J. Acoust. Soc. Am., 1998; 103(1): 136−142 DOI: 10.1121/1.421084
|
[11] |
范军, 汤渭霖, 卓琳凯. 声呐目标回声特性预报的板块元方法. 船舶力学, 2012; 16(1): 171−180 DOI: 10.3969/j.issn.1007-7294.2012.01.020
|
[12] |
郑国垠, 范军, 汤渭霖. 考虑遮挡和二次散射的修正板块元算法. 声学学报, 2011; 36(4): 377−383 DOI: 10.15949/j.cnki.0371-0025.2011.04.010
|
[13] |
范军, 卓琳凯. 水下目标回波特性计算的图形声学方法. 声学学报, 2006; 31(6): 511−516 DOI: 10.3321/j.issn:0371-0025.2006.06.006
|
[14] |
张小凤, 赵俊渭. 非入射方向有限长弹性柱声散射特性研究. 陕西师范大学学报(自然科学版), 2002; 30(3): 57−61 DOI: 10.3969/j.issn.1672-4291.2002.03.012
|
[15] |
张小凤. 双/多基地声呐定位及目标特性研究. 博士学位论文, 西安: 西北工业大学, 2003
|
[16] |
范军. 水下复杂目标回声特性研究. 博士学位论文, 上海: 上海交通大学, 2001
|
[17] |
刘成元, 张明敏, 王亚玲. 基于物理声学法的目标双基地散射场计算. 海军工程大学学报, 2012; 24(4): 101−103 DOI: 10.7495/j.issn.1009-3486.2012.04.021
|
[18] |
马黎黎, 王仁乾, 项海格. 收发分置目标强度的计算及前向散射信号的分离. 声学学报, 2009; 34(6): 481−489 DOI: 10.3321/j.issn:0371-0025.2009.06.001
|
[19] |
冯雪磊, 陈南若. 边界元方法分析收发分置Benchmark潜艇低频目标强度. 声学技术, 2018; 37(5): 418−424 DOI: 10.16300/j.cnki.1000-3630.2018.05.003
|
[20] |
Wang B, Wang W H, Fan J, et al. Modeling of bistatic scattering from an underwater non-penetrable target using a Kirchhoff approximation method. Def. Technol., 2022; 18(7): 1097−1106 DOI: 10.1016/j.dt.2022.04.008
|
[21] |
Agounad S, Décultot D, Chati F, et al. Experimental study of the bistatic acoustic scattering from cylindrical shell. Mech. Syst. Signal Process., 2023; 186: 109892 DOI: 10.1016/j.ymssp.2022.109892
|
[22] |
Schenck H A, Benthien G W, Barach D. A hybrid method for predicting the complete scattering function from limited data. J. Acoust. Soc. Am., 1995; 98(6): 3469−3481 DOI: 10.1121/1.413779
|
[23] |
封建湖, 车刚明. 数值分析原理. 北京: 科学出版社, 2001
|
[24] |
Foote K G, Francis D T I. Comparing Kirchhoff-approximation and boundary-element models for computing gadoid target strengths. J. Acoust. Soc. Am., 2002; 111(4): 1644−1654 DOI: 10.1121/1.1458939
|