EI / SCOPUS / CSCD 收录

中文核心期刊

ZHANG Xuesong, SHANG Dejiang, XIAO Yan. Adaptive control method for low-frequency line spectrum noise based on normal intensity[J]. ACTA ACUSTICA, 2024, 49(1): 89-103. DOI: 10.12395/0371-0025.2022123
Citation: ZHANG Xuesong, SHANG Dejiang, XIAO Yan. Adaptive control method for low-frequency line spectrum noise based on normal intensity[J]. ACTA ACUSTICA, 2024, 49(1): 89-103. DOI: 10.12395/0371-0025.2022123

Adaptive control method for low-frequency line spectrum noise based on normal intensity

More Information
  • PACS: 
    • 43.30  (Underwater sound)
    • 43.50  (Noise: its effects and control)
    • 43.40  (Structural acoustics and vibration)
  • Received Date: November 04, 2022
  • Revised Date: March 14, 2023
  • Available Online: January 04, 2024
  • A noise adaptive control method based on the normal acoustic energy flux of underwater structures is proposed to control low-frequency radiation noise in the far-field of underwater structures. The method utilizes the normal acoustic energy flux in the near-field of the structure as the control physical quantity, and adaptively adjusts the output of the secondary sound source using an active control system to suppress the energy propagation in the normal direction of the structure, thereby achieving reduction of low-frequency radiation noise in the far-field. The experimental results, based on a cylindrical shell model, indicate that within the frequency range of 1000 Hz to 3000 Hz, the energy flux control method, as opposed to the traditional active control method using near-field sound pressure as the primary control parameter, can achieve noise reduction in the azimuthal direction in the far-field area from 52.8% to 76.3%, while ensuring that the total radiated acoustic power remains unchanged. Furthermore, as the frequency decreases, the noise reduction range becomes wider.

  • [1]
    何祚镛. 水下噪声及其控制技术进展和展望. 应用声学, 2002; 21(1): 26−34 DOI: 10.3969/j.issn.1000-310X.2002.01.006
    [2]
    俞孟萨, 林立. 船舶水下噪声研究三十年的基本进展及若干前沿基础问题. 船舶力学, 2017; 21(2): 244−248 DOI: 10.3969/j.issn.1007-7294.2017.02.015
    [3]
    何世平, 何元安, 张文群, 等. 去耦覆盖层降噪性能评价指标的理论探讨. 声学学报, 2014; 39(2): 177−184 DOI: 10.15949/j.cnki.0371-0025.2014.02.004
    [4]
    姜海龙, 艾夏禹, 刘丽滨, 等. 潜艇振动控制技术研究进展. 机电工程技术, 2021; 50(7): 5−8 DOI: 10.3969/j.issn.1009-9492.2021.07.002
    [5]
    Wang W, Thomas P J. Low-frequency active noise control of an underwater large-scale structure with distributed giant magnetostrictive actuators. Sens. Actuators A: Phys., 2017; 263: 113−121 DOI: 10.1016/j.sna.2017.05.044
    [6]
    Noh E, Woo S, Lee D J, et al. Active control of low-frequency noise in bubbly water-filled pipes. J. Mech. Sci. Technol., 2019; 33(7): 3127−3135 DOI: 10.1007/s12206-019-0608-3
    [7]
    陈克安. 有源噪声控制技术及其在舰船中的应用. 中国舰船研究, 2017; 12(4): 17−21 DOI: 10.3969/j.issn.1673-3185.2017.04.003
    [8]
    丁少虎. 水下有限长弹性圆柱壳振动声辐射有源控制. 博士学位论文, 西安: 西北工业大学, 2015
    [9]
    金全洲, 李天匀, 赵耀, 等. 圆柱壳结构振动功率流和主动力幅值的控制研究. 船舶力学, 2009; 13(2): 305−312 DOI: 10.3969/j.issn.1007-7294.2009.02.020
    [10]
    朱宏平, 徐荣光. 基于功率流的结构主动控制方法. 噪声与振动控制, 1998; 18(5): 21−28
    [11]
    赵汉波, 郑援, 姜斌. 多个线谱噪声的局部区域有源消声. 舰船科学技术, 2014(4): 58−62 DOI: 10.3404/j.issn.1672-7649.2014.04.011
    [12]
    Ruzzene M, Baz A. Active control of wave propagation in periodic fluid-loaded shells. Smart Mater. Struct., 2001; 10(5): 893−906 DOI: 10.1088/0964-1726/10/5/306
    [13]
    Pan X, Tso Y, Juniper R. Active control of low-frequency hull-radiated noise. J. Sound Vib., 2008; 313(1-2): 29−45 DOI: 10.1016/j.jsv.2007.11.022
    [14]
    Pan X, Tso Y, Juniper R. Active control of radiated pressure of a submarine hull. J. Sound Vib., 2008; 311(1-2): 224−242 DOI: 10.1016/j.jsv.2007.09.001
    [15]
    Loghmani A, Danesh M, Kwak M K, et al. Vibration suppression of a piezo-equipped cylindrical shell in a broad-band frequency domain. J. Sound Vib., 2017; 411: 260−277 DOI: 10.1016/j.jsv.2017.08.051
    [16]
    Aslani P, Sommerfeldt S D, Blotter J D. Active control of simply supported cylindrical shells using the weighted sum of spatial gradients control metric. J. Acoust. Soc. Am., 2018; 143(1): 271−280 DOI: 10.1121/1.5020784
    [17]
    毛崎波, 姜哲. 通过声辐射模态研究结构声辐射的有源控制. 声学学报, 2001; 26(3): 277−281 DOI: 10.3321/j.issn:0371-0025.2001.03.015
    [18]
    丁少虎, 陈克安, 马玺越, 等. 水下圆柱壳声辐射有源力控制及机理分析. 振动工程学报, 2014; 27(4): 547−554 DOI: 10.3969/j.issn.1004-4523.2014.04.010
    [19]
    Yang T J, Gu Z Q. Active control of structural vibration with on-line secondary path modeling. Prog. Nat. Sci., 2004; 14(6): 511−518 DOI: 10.1080/10020070412331343871
    [20]
    何琳, 李彦, 杨军. 磁悬浮−气囊主被动混合隔振装置理论和实验. 声学学报, 2013; 38(2): 241−249 DOI: 10.15949/j.cnki.0371-0025.2013.02.014
    [21]
    郑援, 胡成军, 赵汉波. 船舶航行辐射噪声的主动控制方法研究. 信号处理, 2013; 29(9): 1200−1205 DOI: 10.3969/j.issn.1003-0530.2013.09.016
    [22]
    时洁, 邓安定, 时胜国, 等. 一种非线性声场的基频和高次谐波频域有限差分计算方法: CN 111353251A. 2020-06-30
    [23]
    杨德森, 王文博, 时洁, 等. 有限潜深圆柱壳低频矢量声场特性分析. 哈尔滨工程大学学报, 2020; 41(2): 166−174 DOI: 10.11990/jheu.201902038
  • Related Articles

    [1]CAO Shengnan, SUN Hongling, WANG Han. The influence of sinusoidal noise canceller on noise reduction performance in feedforward hybrid active noise control system[J]. ACTA ACUSTICA, 2025, 50(2): 276-286. DOI: 10.12395/0371-0025.2024043
    [2]WANG Yan, SHANGGUAN Peixi, HAO Yu, LIU Xuyan. Adaptive enhancer of the target radiated line-spectrum under non-Gaussian noise[J]. ACTA ACUSTICA, 2024, 49(5): 927-938. DOI: 10.12395/0371-0025.2023040
    [3]WU Xintong, LIU Yu, MA Xiaochuan, MA Zhongjing. Adaptive measurement conversion for underwater target tracking with unknown non-Gaussian noise[J]. ACTA ACUSTICA, 2024, 49(4): 671-682. DOI: 10.12395/0371-0025.2024031
    [4]WANG Shaobo, XU Jian, GAO Yan, LI Chong, LIN Qinhao, GAO Da, ZHANG Jin, JIN Boao. Geometric model of human factor parameters for channel identification for active noise control[J]. ACTA ACUSTICA, 2024, 49(2): 226-237. DOI: 10.12395/0371-0025.2023179
    [5]LUO Pingzhan, XU Jian, ZHANG Fangjie, LI Xiaodong. Active control of higher-order sound in ducts using boundary-located secondary sources[J]. ACTA ACUSTICA, 2021, 46(6): 1193-1201. DOI: 10.15949/j.cnki.0371-0025.2021.06.039
    [6]JIN Shenglong, CHI Cheng, LI Yu, HUANG Haining. A supervised learning detection method with pre-processing of sparsity-based adaptive line enhancer[J]. ACTA ACUSTICA, 2021, 46(6): 1059-1069. DOI: 10.15949/j.cnki.0371-0025.2021.06.025
    [7]WANG Zhengmin, RAO Wei, LI Deyu. Optimal design method of Helmholtz resonators for noise control in enclosures[J]. ACTA ACUSTICA, 2019, 44(5): 834-842. DOI: 10.15949/j.cnki.0371-0025.2019.05.004
    [8]SUN Yunping, SUN Hongling, ZHANG Wei, WANG Han, YANG Jun. Hybrid active control of fluid-borne sound and structure-borne sound in liquid-filled pipe system[J]. ACTA ACUSTICA, 2019, 44(4): 780-787. DOI: 10.15949/j.cnki.0371-0025.2019.04.040
    [9]LI Yanfei, SHEN Huijie, ZHANG Linke, SU Yongsheng. Sound propagation characteristics of a metamaterials-type periodic pipe and its low-frequency broadband control[J]. ACTA ACUSTICA, 2017, 42(3): 334-340. DOI: 10.15949/j.cnki.0371-0025.2017.03.010
    [10]ZHANG Qizhi, JIA Yongle. Adaptive active noise control using variable structure technology[J]. ACTA ACUSTICA, 2002, 27(1): 33-37. DOI: 10.15949/j.cnki.0371-0025.2002.01.007
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (158) PDF downloads (62) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return