EI / SCOPUS / CSCD 收录

中文核心期刊

利用质量流注入的流激孔腔噪声共振峰抑制

宋哲男, 常道庆, 孙红灵, 程晓斌, 王晗

宋哲男, 常道庆, 孙红灵, 程晓斌, 王晗. 利用质量流注入的流激孔腔噪声共振峰抑制[J]. 声学学报, 2023, 48(1): 225-237. DOI: 10.15949/j.cnki.0371-0025.2023.01.030
引用本文: 宋哲男, 常道庆, 孙红灵, 程晓斌, 王晗. 利用质量流注入的流激孔腔噪声共振峰抑制[J]. 声学学报, 2023, 48(1): 225-237. DOI: 10.15949/j.cnki.0371-0025.2023.01.030
SONG Zhenan, CHANG Daoqing, SUN Hongling, CHENG Xiaobin, WANG Han. Suppression of flow-induced resonant cavity noise using mass flow injection[J]. ACTA ACUSTICA, 2023, 48(1): 225-237. DOI: 10.15949/j.cnki.0371-0025.2023.01.030
Citation: SONG Zhenan, CHANG Daoqing, SUN Hongling, CHENG Xiaobin, WANG Han. Suppression of flow-induced resonant cavity noise using mass flow injection[J]. ACTA ACUSTICA, 2023, 48(1): 225-237. DOI: 10.15949/j.cnki.0371-0025.2023.01.030

利用质量流注入的流激孔腔噪声共振峰抑制

基金项目: 

国家科技重大专项项目(J2019-||-0013-0034)资助

详细信息
    通讯作者:

    常道庆,changdq@mail.ioa.ac.cn

Suppression of flow-induced resonant cavity noise using mass flow injection

  • 摘要: 通过数值仿真揭示了开口前缘垂直注入质量流和前壁面平行注入质量流抑制流激孔腔噪声的机制,研究了多参数影响下脉动压力峰值降噪量和总降噪量随质量流注入速度的变化规律。开口前缘垂直注入质量流通过抬升剪切层,避免漩涡冲击开口后缘,抑制流激孔腔噪声脉动压力峰值;在一定范围内质量流注入速度越大,脉动压力峰值降噪量越大,但是低频部分引起的抬升也会越高,导致总降噪量先增大后减小;经优化后的峰值降噪量和总降噪量分别可以达到15dB和9.5dB。开口前壁面平行注入质量流则是通过加强开口处剪切层的稳定性,避免发生漩涡脱落,达到抑制流激孔腔噪声的目的;当质量流入口面积大于孔腔开口前壁面积2/3时,不仅可以显著降低流激孔腔噪声脉动压力的峰值,并且可以很好地抑制其它频段噪声的抬升;质量流注入速度为来流速度的0.5倍时,脉动压力峰值降噪量和总降噪量分别可以达到18dB和15.4dB。
    Abstract: The mechanism of flow-induced cavity noise control by vertical mass flow injection at the leading edge of the opening and parallel mass flow injection at the front wall surface is revealed through numerical simulation, and the law of peak noise reduction and total noise reduction by the injected flow velocities under the influence of multiple parameters is studied. The vertical mass flow injection at the leading edge of the opening lifts shear layer to avoid the impact of vortex on the trailing edge of the opening and suppress the noise pulsation pressure peak of the flow-induced cavity. In a certain range, the higher the injected flow velocity, the greater the peak reduction of the flow-induced cavity noise, but the lift in the low-frequency caused by the mass flow injection will also be higher, resulting in the total sound pressure level first decreases and then increases. After optimization, the peak noise reduction and total noise reduction can reach 15dB and 9.5dB, respectively. The parallel injection of mass flow into the front wall of the opening can avoid vortex shedding by strengthening the stability of the shear layer at the opening and achieve the purpose of suppressing the flow-induced cavity noise. When the entrance area is larger than two-third of the front wall area, not only the peak value of flow-induced cavity noise can be significantly reduced, but also the rise of noise in other frequency band can be well restrained, and the noise reduction effect of total sound pressure level is obvious. When the mass flow injection velocity is 0.5 times of the incoming flow velocity, the peak and total noise reduction of the pulsating pressure can reach 18dB and 15.4dB, respectively.
  • [1] 熊济时, 吕世金, 邱昌林等. 流激开孔和空腔结构耦合振动噪声试验研究. 中国舰船研究, 2017; 12(4):117-121
    [2] 俞孟萨, 张铮铮, 高岩. 开口与空腔流激声共振及声辐射研究综述. 船舶力学, 2015; 19(11):1422-1430
    [3] 刘璐璐, 吕世金, 刘进. 流激孔腔噪声特征及控制方法研究. 船舶力学, 2017; 21(4):493-502
    [4] 衣云峰, 何祚镛. 圆柱形腔流激振荡及其耦合共振的研究. 声学学报, 1996; 21(4):439-456
    [5] 梁勇, 陈迎春, 赵鲲, 王勇, 岳廷瑞, 陈正武. 低速开式空腔自激反馈流场结构与流致噪声的风洞试验研究. 声学学报, 2020; 45(6):859-868
    [6]

    WANG Yusheng, LIU Zhenjiang. Studies on the properties of flow-induced oscillation and sound radiation in streamlined protuberant special cavities. Chinese Journal of Acoustics, 1994; 13(3):224-230

    [7] 吴亚东, 欧阳华, 黄友. 基于被动控制的空腔脉动压力实验研究. 工程热物理学报, 2013; 34(9):1640-1644
    [8] 章文文, 徐荣武, 何琳等. 水中开孔腔流激振荡控制实验研究. 力学学报, 2021; 53(10):2763-2775
    [9]

    Shaw L L. Suppression of aerodynamically induced cavity pressure oscillations. J. Acoust. Soc. Am., 1979; 66(3):880-884

    [10]

    Ukeiley L S, Ponton M K, Seiner J M et al. Suppression of Pressure Loads in Cavity Flows. AIAA J., 2004; 42(1):70-79

    [11] 宋文成, 李玉军, 冯强. 武器舱气动噪声主动流动控制技术风洞试验研究. 空气动力学学报, 2016; 34(1):33-39
    [12]

    Shaw L, Afb W, Northcraft S. Closed loop active control for cavity acoustics. 5th AIAA/CEAS Aeroacoustics Conference and Exhibit, Bellevue, WA, USA, 1999

    [13]

    Grove J, Birkbeck R, Kreher J. Acoustic and separation characteristics with bay leading edge blowing. 6th Aero-acoustics Conference and Exhibit, Lahaina, HI, USA, 2000

    [14]

    Bueno P C, Unalmis O H, Clemens N T et al. The effects of upstream mass injection on a Mach 2 cavity flow. 40th AIAA Aerospace Sciences Meeting Exhibit, Reno, NV, USA, 2002

    [15]

    Vakili A D, Gauthier C. Control of cavity flow by upstream mass-injection. J. Aircr., 1991; 31(1):169-181

    [16]

    Sarohia V, Massie P F. Control of cavity noise. J. Aircr., 1997; 14(9):1275-1279

    [17]

    Amitay M, Smith D R, Kibens V et al. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA J., 2015; 39(3):361-370

    [18] 宁方立, 史红兵, 丘廉芳等. 前缘高频振动对亚声速开式空腔内强噪声影响的数值研究. 航空学报, 2015; 36(12):3843-3852
    [19]

    Stanek M, Raman G, Kibens V et al. Control of cavity resonance through very high frequency forcing. 6th Aeroacoustics Conference and Exhibit, Lahaina, HI, USA, 2000

    [20] 罗柏华, 胡章伟. 流动诱导空腔振荡及其声激励抑制的实验研究. 南京航空航天大学学报, 1996; 28(3):331-336
    [21]

    Raman G, Surya R. Cavity resonance suppression using miniature fluidic oscillators. AIAA J., 2004; 42(12):653-675

    [22]

    Hamed A, Das K, Basu D. Numerical simulations of fluidic control for transonic cavity flows. 42nd AIAA Aerospace Sciences Meeting Exhibit, Reno, NV, USA, 2004

    [23] 杨党国, 吴继飞, 罗新福. 零质量射流对开式空腔气动噪声抑制效果分析. 航空学报, 2011; 32(6):1007-1014
    [24] 余培汛, 白俊强, 郭博智等. 射流对空腔噪声抑制效果研究. 计算力学学报, 2014; 31(5):663-669
    [25]

    YU Peixun, BAI Junqiang, GUO Bozhi, HAN Xiao, HAN Shanshan. Suppression effect of jet flow on pulsating pressure of cavity using scale-adaptive simulation model. Chinese Journal of Acoustics, 2015; 34(1):67-83

    [26] 延浩, 黄文超, 潘凯等. 前缘射流对空腔噪声抑制效果的试验研究. 装备环境工程, 2020; 17(9):118-124
    [27] 邓玉清, 张楠. 基于大涡模拟的抑制孔腔涡旋流动与脉动压力的流动控制方法研究. 船舶力学, 2019; 23(1):29-42
    [28]

    Hillewaere J, Dooms D, Van Quekelberghe B et al. Un-steady Reynolds averaged Navier-Stokes simulation of the post-critical flow around a closely spaced group of silos. J. Fluids Struct., 2012; 30(1):51-72

    [29]

    Liu Z G, Du G S, Shao Z F. The direct numerical simulation of pipe flow. J. Hydrodyn., 2013; 25(1):125-130

    [30]

    Yuan G Q, Jiang W K, Hua H X. Hydroacoustic analysis of open cavity subsonic flow based on multiple parameter numerical models. J. Hydrodyn., 2015; 27(5):668-678

    [31]

    Smagorinsky J. General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev., 1963; 91(3):99-164

    [32]

    Lily D K. A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids, 1992; 4(3):633-635

计量
  • 文章访问数:  215
  • HTML全文浏览量:  9
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-26
  • 修回日期:  2022-11-13
  • 网络出版日期:  2023-01-17
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回