深海直达波区卷积神经网络测距方法
Convolution neural network ranging method in the deep-sea direct-arrival zone
-
摘要: 深海声场通常可以看作不同掠射角的多途声线在接收器处的叠加,其中经海底反射的声线携带与海底参数有关的声场特征。利用深度卷积神经网络分别学习垂直阵声压域(CNN-Field)和垂直阵波束域(CNN-CBF)特征的方法被用来估计直达波区声源距离。该方法首先对仿真直达波区声场数据做预处理,然后将声压域和波束域的声场数据分别作为训练集训练深度卷积神经网络模型,最后输入测试集数据到训练完成的模型中估计声源距离.实测环境参数的仿真实验表明CNN-Field方法在不同海底参数的测试集下测距结果差异较大,CNN-CBF方法差异较小,而且在16阵元10 m等间距垂直阵的阵元域信噪比大于0dB时估计准确率可以达到97%.海试数据处理结果表明CNN-CBF方法的直达波区内测距准确率高于CNN-Field,在距离10 km以内的平均准确率可以达到93.16%.Abstract: The deep Convolution Neural Network(CNN) is used to learn the characteristics of Vertical Linear Array(VLA) sound field domain(CNN Field) and VLA beam domain(CNN-CBF) respectively to estimate the source distance in the deep-sea direct-arrival zone.Firstly,the simulated sound field data is preprocessed,and then the sound field-domain and beam-domain data are used as training sets to train the CNN model.Finally,the test data are input into the trained model to estimate the source range.The simulation results show that the ranging results of the CNN-Field method are quite different under the test set of different seabed parameters,and the difference of the CNN-CBF method is small,and the estimation accuracy of CNN-CBF in a 16-element VLA with element spacing of 10 m can reach 97%when the signal-to-noise ratio is greater than 0 dB.The sea trial data processing results show that the ranging accuracy of CNN-CBF in the deep-sea direct-arrival zone is higher than that of CNN field,and the average accuracy rate can reach 93.16%within 10 km.