车载场景结合盲源分离与多说话人状态判决的语音抽取
Speech extraction based on blind source separation and multi-talker status tracking in automobile environment
-
摘要: 在车载分布式传声器阵列场景中,结合盲源分离TRINICON (Triple-N ICA for convolutive mixtures)算法与多说话人状态判决实现期望语音抽取。根据分布式传声器阵列与声源的相对位置关系,设计特定的盲源分离初始化条件以保证输出通道与声源的映射关系;根据分布式传声器阵列的频响特点,设计特征矢量来进行多说话人判决,并将判决结果引入TRINICON算法参数迭代过程。在使用实际车载录音数据的仿真评测中,所提方法在不同信噪比下有较高的鲁棒性,可有效提升TRINICON算法的收敛速度和语音信号的信扰比,且可以确保准确的通道映射。评测结果表明该方法可以在车载场景中有效抽取出期望语音,为车载复杂场景下的声信息提取提供了一种可靠且收敛快速的解决方法。Abstract: The TRINICON (Triple-N ICA for convolutive mixtures) algorithm is utilized to extract the desired speech based on microphones distributed in an automotive cabin.Both the initialization of the TRINICON filters and the multi-talker status determination are based on the spatial relationship between the speech sources and the microphones.Simulations using the captured signal in real automobile environment demonstrate that the proposed method can effectively improve the convergence speed of the TRINICON algorithm.Furthermore,a reliable mapping between the input and output of the blind source separation system is achieved,based on which the desired speech signal can be extracted efficiently.This research provides an effective solution for extracting desired speech in complex automobile environment.