EI / SCOPUS / CSCD 收录

中文核心期刊

负跃层浅海声传播问题的解析解及其在水下脉冲声传播研究中的应用

Exact solution based on wave-number-integration theory for acoustic propagation in a shallow-water environment with a thermocline and its application to underwater pulse propagation

  • 摘要: 提出一个基于波数积分理论的解析解,可用于计算包含海面下均匀层、负跃层、海底上方均匀层以及液态均匀海底的负跃层浅海波导中的声场。对声源位于水体不同层中的情况给出详细的推导,给出深度格林函数的解析解,并介绍了如何利用其计算点源和线源这两种情况下的声场.通过一个典型的负跃层浅海算例,验证了本文所提方法的精度,以及处理点源及线源问题的能力.此外,将本文提出的方法应用于水下脉冲声传播研究。针对某次实验的实际海洋环境,利用本文方法研究接收到的脉冲信号的波形特点,并与利用射线理论分析得到的相邻脉冲到达时间间隔等理论结果进行比较·结果表明,利用本方法得到的相邻脉冲到达时间数值结果与理论值高度一致。本方法非常适用于需要大量重复计算声场的情况,如水下脉冲声传播、海底声学参数反演等问题的计算机仿真研究。

     

    Abstract: This paper presents an exact solution based on the wavenumber-integration theory for the acoustic field in a shallow-water environment consisting of a homogeneous layer below the sea-surface,a thermocline,a homogeneous layer above the bottom,and a liquid,homogeneous seabed.Detailed derivations are given,where both of the pointand line-source cases are considered.Besides,the presented method is also applied to the study of underwater pulse propagation.Waveforms of received signals are calculated with the presented method,with the environmental data measured during an experiment.The calculated time interval between two adjacent pulses is in excellent agreement with the estimated value by the ray theory.The presented method is well suited for scenarios where the acoustic field is required to be computed a huge number of times,for instance,in simulations of the pulse propagation problem,the geoacoustic inversion problem,etc.

     

/

返回文章
返回