EI / SCOPUS / CSCD 收录

中文核心期刊

稀疏贝叶斯学习远近场混合源定位方法

邱龙皓, 梁国龙, 王燕, 王晋晋

邱龙皓, 梁国龙, 王燕, 王晋晋. 稀疏贝叶斯学习远近场混合源定位方法[J]. 声学学报, 2018, 43(1): 1-11. DOI: 10.15949/j.cnki.0371-0025.2018.01.001
引用本文: 邱龙皓, 梁国龙, 王燕, 王晋晋. 稀疏贝叶斯学习远近场混合源定位方法[J]. 声学学报, 2018, 43(1): 1-11. DOI: 10.15949/j.cnki.0371-0025.2018.01.001
QIU Longhao, LIANG Guolong, WANG Yan, WANG Jinjin. Mixed near-field and far-field sources localization method using sparse Bayesian learning[J]. ACTA ACUSTICA, 2018, 43(1): 1-11. DOI: 10.15949/j.cnki.0371-0025.2018.01.001
Citation: QIU Longhao, LIANG Guolong, WANG Yan, WANG Jinjin. Mixed near-field and far-field sources localization method using sparse Bayesian learning[J]. ACTA ACUSTICA, 2018, 43(1): 1-11. DOI: 10.15949/j.cnki.0371-0025.2018.01.001

稀疏贝叶斯学习远近场混合源定位方法

基金项目: 

青岛海洋科学与技术国家实验室开放基金项目(QNLM2016ORP0102)资助

国家自然科学基金项目(11504064,61405041)

详细信息
    通讯作者:

    王燕,wangyan@hrbeu.edu.cn

  • PACS: 
      43.60;43.66

Mixed near-field and far-field sources localization method using sparse Bayesian learning

  • 摘要: 针对远、近场混合源定位,提出一种基于稀疏重构理论框架的远、近场混合源分离和定位算法。该算法充分考虑平面波导向矢量和球面波导向矢量的相关特性,利用远、近场声源在阵列上的响应机理的差异,针对远、近场区域分别构造过完备字典,采用多测量矢量模型下的稀疏贝叶斯学习算法重构远近场混合源的空间谱,同时完成远近场混合源的分离和定位。本文算法可以在半波长间距布放的线列阵下对混合源进行定位,适用于高斯和非高斯信号,且无需信源数和噪声功率等先验信息,并具有较高的分辨力和定位精度·计算机仿真结果验证了算法的有效性。
    Abstract: To localize mixed near-field and far-field sources, this paper develops an algorithm based on sparse reconstruction theory. The proposed method takes full account of the correlation property between plane wave steering vectors and that of spherical waves. By creating over-complete dictionaries for the near-field and far-field areas separately and utilizing sparse Bayesian learning technique, the method reconstructs the space spectrum of the mixed sources successively. The separation and localization of mixed sources are completed at the same time, which can refrain the accumulative error caused by differencing approach of near-field and far-field sources. The proposed algorithm can deal with Gaussian signals and non-Gaussian signals without knowing the number of sources. Computer simulation results validate the effectiveness and the high precision of the proposed algorithm.
  • 期刊类型引用(8)

    1. 李雄辉,梁国龙,沈同圣,罗再磊. 单矢量水听器的改进稀疏贝叶斯学习方位估计算法. 声学学报. 2025(01): 77-85 . 本站查看
    2. 李晨牧,邱龙皓,王晋晋,梁国龙,沈同圣. 稀疏贝叶斯学习远近场混合源离网定位算法. 声学学报. 2025(02): 456-474 . 本站查看
    3. XING Chuanxi,WAN Zhiliang,JIANG Siyuan,YU Ruimeng. Direction of arrival estimation based on high-order cumulant by sparse reconstruction of underwater acoustic signals. Chinese Journal of Acoustics. 2023(01): 22-39 . 必应学术
    4. 商志刚,曲星昊,乔钢,郝程鹏. 远近场混合源的波束解卷积定位. 声学学报. 2023(03): 447-458 . 本站查看
    5. 王燕,赵磊,郝宇,邱龙皓,梁国龙. 观测平台转向时稀疏贝叶斯学习方位估计. 声学学报. 2022(04): 432-439 . 本站查看
    6. 邢传玺,万志良,姜思源,虞蕊萌. 水声信号稀疏重构的高阶累积量波达方向估计. 声学学报. 2022(04): 440-450 . 本站查看
    7. ZHANG Guang-pu,ZHENG Ce,QIU Long-hao,SUN Si-bo. Multi-Bernoulli Filter for Tracking Multiple Targets Using Sensor Array. China Ocean Engineering. 2020(02): 245-256 . 必应学术
    8. 臧青杨,陈春晓,杨俊豪,李东升. 基于块稀疏贝叶斯学习的多目标动态荧光分子重建. 生物医学工程研究. 2018(04): 454-459+464 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  141
  • HTML全文浏览量:  11
  • PDF下载量:  46
  • 被引次数: 15
出版历程
  • 收稿日期:  2017-08-20
  • 修回日期:  2017-10-17
  • 网络出版日期:  2022-06-27

目录

    /

    返回文章
    返回