EI / SCOPUS / CSCD 收录

中文核心期刊

机械阻抗与声阻抗结合提高微穿孔板低频吸声性能

Enhancement of low-frequency sound absorption of micro-perforated panels by adding a mechanical impedance

  • 摘要: 提出了在微穿孔板后部引入机械阻抗形成组合结构来解决微穿孔板低频吸声性能差的问题。由机械阻抗板两侧质点速度相同得出机械阻抗单元的传递矩阵,采用传递矩阵法将其与空腔、微穿孔板单元串接,建立组合结构理论计算模型;通过分析品质因子获得带宽与机械阻抗板质量成反比;试验得出组合结构在400 Hz附近有系数为0.8以上的吸声峰值,试验结果与理论计算吻合。在传统微穿孔板共振吸声机制的基础上加入机械共振,能够实现在不增加结构厚度的前提下提高低频吸声性能;降低机械阻抗板质量并且适当控制边界阻尼系数可以实现吸声频带的拓宽。

     

    Abstract: In order to solve the bad low frequency sound absorption of the Micro-Perforated panel (MPP) absorber, mechanical impedance was introduced in the back of the MPP absorber to form a composite structure. According to the same particle vibration velocity on both sides of a plate, the mechanical impedance plate transfer matrix could be obtained. The units of the mechanical impedance, cavity and MPP were connected ix series with the use of the transfer matrix method, thus creating the composite structure's theoreticM calculation model. The quality factor affecting absorption bandwidth was analysed. Bandwidth is inversely proportional to the mechanical impedance plate mass. During the experiments, when at close to 400 Hz, the composite structure reached an absorption peak with a coefficient of above 0.8. Experimental results concurred with theoretical calculations. Mechanical resonance is added based on the traditional MPP resonance sound absorption mechanism. Through this, the performance of low frequency sound absorption can be improved without increasing the thickness of the structure. The frequency band can be broadened by redncing the mechanical impedance plate mass and controlling its boundary-damping coefficient.

     

/

返回文章
返回