EI / SCOPUS / CSCD 收录

中文核心期刊

二维声学多层快速多极子边界元及其应用

Multilevel fast multipole boundary element method for 2D acoustic problems and its applications

  • 摘要: 与模型自由度的平方成正比的存储量和计算量,使传统边界元无法应用到大型模型的计算。为此,发展了一种二维声学多层快速多极子边界元算法。通过二维Helmholtz核函数展开理论的简要介绍,推导了源点矩计算、源点矩转移、源点矩至本地展开转移、本地展开转移公式,并详细描述了二维声学快速多极子边界元算法的具体实现步骤。使用快速傅里叶插值进行源点矩和本地展开系数的多层传递。采用对角左预处理方法,改善边界方程的条件数,减少迭代求解次数。最后通过数值算例,验证了所发展的二维声学快速多极子算法的正确性和高效性。

     

    Abstract: Since the memory requirement and computation cost of solving conventional boundary element method have quadratic ratio with respect,to the freedoms,it makes the conventional boundary element method unsuitable for large scale problems.A multilevel fast multipole boundary element of 2D acoustic wave problems is developed.Based on the introduction of kernel expansion theory of 2D Helmholtz equation,the formulations of moment computation,moment to moment,moment to local and local to local transformation are derived.The fast multipole method algorithm for 2D acoustic problems is described in detail.Fast Fourier interpolation is used to transfer the moments and local expansion coefficients from level to level.Left preconditioner based on block diagonal method is adopted to improve the condition number of the corresponding linear equations.At the end.numerical experiments and applications are used to verify the accurate and the efficiency of the algorithm.

     

/

返回文章
返回