基于联合波叠加法的相干声场全息重建与预测理论
Reconstruction and prediction of coherent acoustic field with the combined wave superposition approach
-
摘要: 在相干声场中,很难将各个声源产生的声压分离开来,所以常规波叠加法不能用于相干声场的全息重建与预测。根据相干声场的叠加性,通过构造全息面与多个声源之间的联合声压匹配矩阵,建立了基于联合波叠加法的相干声场全息重建与预测理论。该理论可以精确地重构出各个声源的表面声学信息,也可以分别预测每个声源的空间声场分布,叠加后即可获得相干声场的空间分布,从而实现了相干声场的重建与预测。实验和数值仿真的结果表明:该相干声场重建与预测理论不仅能有效地解决相干声场的重建与预测问题,并且可以作为一种相干声场分离技术,拓宽了全息技术的应用范围。Abstract: The routine wave superposition approach cannot be used in reconstruction and prediction of a coherent acoustic field, because it is impossible to separate the pressure generated by individual sources. According to the superposition theory of the coherent acoustic field, a novel method based on the combined wave superposition approach is developed to reconstruct and predict the coherent acoustic field by building the combined pressure matching matrixes between the hologram surfaces and the sources. The method can reconstruct the acoustic information on surfaces of the individual sources, and it is possible to predict the acoustic field radiated from every source and the total coherent acoustic field can also be calculated spontaneously. The experimental and numerical simulation results show that this method can effectively solve the holographic reconstruction and prediction of the coherent acoustic field and it can also be used as a coherent acoustic field separation technique. The study on this novel method extends the application scope of the acoustic holography technique.