EI / SCOPUS / CSCD 收录

中文核心期刊

反演声场简正波耦合系数矩阵

Inversion of acoustic mode coupling coefficient matrix induced by shallow water internal waves

  • 摘要: 研究了有内波传播时声场的耦合简正波形式,分析表明各阶简正波系数的时间信号包含多个频率成分,各成分的频率为对应的两地波数差与内波速度的乘积,各频率成分的振幅与对应简正波之间的耦合系数成正比。因此即使内波的波形不随其传播而变化,接收器处的各阶简正波系数仍然具有多频的复杂结构。由此并根据简正波耦合强度与声场简正波系数起伏强度的对应关系提出了一种反演简正波耦合系数矩阵的方法;并用实验中获得的内波数据,反演了声场;计算结果表明:该方法有效地反演了内波传播情况下的简正波耦合系数矩阵。

     

    Abstract: It is found that the normal mode amplitude time series consist of multi-frequency component by analyzing the structure of acoustical signal when internal wave propagation exists, and each frequency is the product of internal wave speed and the normal mode wave number difference between acoustical receivers and source. The amplitude of each component is proportional to the acoustic mode coupling coefficient. The structure of the normal mode coefficient time series is still complex even the internal waves do not reshape when they propagate from the acoustical receivers to the source. A method is presented to compute the AMCCM by the feature of IWs' motion and the relation between the AMCCM and the acoustical signal fluctuation amplitude. The IWs data measured in the 2001 Asia experiment (ASIAEX2001) is used to check the accuracy of this method by numerical simulation. It is show that the method is accurate to compute the AMCCM.

     

/

返回文章
返回