EI / SCOPUS / CSCD 收录

中文核心期刊

一个聚类数动态可调的水声信号聚类算法

A clustering algorithm of the underwater acoustic signal with the dynamic adjustable number of clusters

  • 摘要: 本文提出了一种可动态调整聚类数的K-均值聚类训练算法。该方法利用样本的已知模式知识,有师地进行聚类中心和聚类数的训练,从而有效地跳出误差平方损失函数局部极小,并减少类间重叠。经对实录舰船等水中目标辐射噪声信号的分析试验,证明该方法有较好的聚类效果。

     

    Abstract: This paper proposes a modifed K-MEANS training algorithm with the dynamic adjustable number of clusters.The algorithm trains the clustering centres and the number of clusters under the supervision of priori labels of samples.Therefore,it can effectively jump out of a local minimum for the squared error cost function and decrease the overlap between patterns.The clustering efficiency of the new algorithm has been demonstrated by clustering experiment of the real underwater sound signal.

     

/

返回文章
返回