EI / SCOPUS / CSCD 收录

中文核心期刊

汉语塞音选择性特征自动萃取的小波变换方法

Automatic extraction of stop-oriented features from Chinese Speech wave using wavelet transform

  • 摘要: 本文提出了汉语语音导引特征的概念,讨论了语音导引特征在自动语音识别中用于导引匹配搜索的运用方式和重要作用;提出并设计了汉语塞音选择性特征自动萃取的小波变换方法和数字信号处理算法。本文方法和算法从声学信号处理和检测的角度,将汉语清辅音声波输入信号自动分为塞音子集BDG:b,d,g、塞音子集ZZHJGPTcCHQK:z,zh,j,g,p,t,c,ch,q,k和擦音集FsSHhX:f,s,sh,x,h;对输入的合清辅音的音节,计算检测并输出汉语自动语音识别系统可以利用的清辅音类属标记b.d.g、STOP/BD和f.s.sh.x.h以及它们的音段起始时标;从声学信息计算检测的角度为汉语自动语音识别系统提供一种新的"从粗到细"的辅助匹配结构。
    算法可用性模拟实验采用实际语音的数据库数据,以手工标注信息作为自动检测分类正确与否的对比标准。对1267个汉语全音节中,总数913个待分类清辅音的初步分类结果表明:正确分类率分别为b.d.g:96.1%,STOP/BD:95.1%和f.s.sh.x.h:89.0%,总体平均正确分类率为93.6%。

     

    Abstract: The concept of directive features for Chinese Speech is presented in this paper.From which a method and its digital signal processing algorithm for automatically extracting stoiroriented features from Chinese speech waveform by using wavelet transform are presented.This method classifies Chinese voiceless consonants into two stop subsets,BDG:b,d,gand zZHJGPTcCHQK:z,zh,i,g,p) t,c,ch,q,k,and one fricative subset FsSHbX:f,s,sh,x,h.For each speech segment of syllables containing voiceless consonant as its initial,the algorithm calculates detection objectives and outputs one of category symbols out of b.d.g,STOP/BD,f.s.sh.x.h and its segment markers,which provide a new'coars to fine'match-searching structure for Chinese automatic speech recognition system.The validity of the method was tested on a subset of 913 syllables containing voiceless consonant as its initial from a database of real speech consisting of 1267 Chinese all-syllable tokens,with hand-labeled initial and final segment markers as the benchmark of the test,resulting in a classification accuracy of 96.1%,95.1%,and 89.0% for category b.d.g,STOP/BD,and Ls.sh.x.h respectively,and in an average accuracy of 93.6% for all of the 913 synables.

     

/

返回文章
返回