EI / SCOPUS / CSCD 收录

中文核心期刊

基于连续高斯混合密度HMM的汉语全音节语音识别研究

A study of speech recognition of complete Chinese syllables based on continuous Gaussian Mixture HMM

  • 摘要: 本文在大量语音分析实验的基础上,对HMM用于汉语全音节语音识别进行了较为深入的探讨,建立了一个连续高斯混合密度HMM的汉语全音节语音识别系统.该系统在训练算法上撇开了传统的Baum-Welch算法,代之以计算复杂度小、存储量小、迭代次数少且具有自动分割效应的分段K平均算法。对于HMM的模型单元的选择,单元的结构以及模型参数的选取,充分考虑了汉语语音的特点;并在语音特征上做了深入的实验分析工作,采用了符合人耳听觉特性的Mel-Scaled参数,用FFT倒谱代替了LPC倒谱,同时利用了语音的动态谱特征和能量特征。另外,本文还针对汉语声母的特点,独特地提出了变帧移分析策略。整个识别系统的首选正识率为91.1%.

     

    Abstract: Based on a large amount of speech study and experiments,this paper gives a deep study on how HMM is applied to the Chinese speech recognition,and establishal a speech recognition system of complete Chinese syllables using the continuous Gaussian Mixture HMM. The systems does not adopt the traditional Baum-Welch Algorithm, but uses segmental K-Means Training.which needs much smaller memory,calculation and iteration times,and can give automatic segmentation of Speech.On the choise of HMM unit,unit structure,and unit parameters,the poper gives a thorough consideration for the properties of Chinese speech.The paper also gives a deep study on speech features,and employed Mel-Scaled FFT-CEP (instead of LPC-CEP) and its regression coefficients,normalized log-energy and its regression coefficients.In addition,the paper proposes the Variant Frame Shift Analysis Algorithm considering characteristics of consonants.The system recognition rate is 91.1%.

     

/

返回文章
返回