EI / SCOPUS / CSCD 收录

中文核心期刊

一种新的实乘子FFT快速算法

A new real-multiplier FFT algorithm

  • 摘要: 本文引入了DFT的四种类型(即DFT-j,j=Ⅰ,Ⅱ,Ⅲ,Ⅳ),探讨了四种DFT之间的联系以及其固有特性,由此提出了适合于长度N=2m所有四种类型DFT的一种新的实乘子快速算法.文中导出了用Kronecker直积与直和形式表示的算法公式;以长度N=23为算例给出了信号流图;分析了算法的运算量,并与传统的基2算法以及现有的其它三种实乘子FFT算法进行了比较.结果表明,本文提出的算法所需运算量最少,用实数作乘子,可进行原位计算,结构简单规则,易于实现.

     

    Abstract: Four types of the DFT(DFT-j,j=Ⅰ, Ⅱ, Ⅲ, Ⅳ)are introduced in this paper.The relationship among four types of the DFT and their inherent properties are explored. Anew real-multiplier FFT algorithm is proposed for all four types of the N=2m DFT. First,thealgorithm formulae represented by Kronecker product and direct sum are derived. Then,thesignal flowgraph for the length-23 FFT is given to illustrate the proposed algorithm. Finally,the computational complexity is analysed and a comparison is made with traditional radix-2algorithm and other existing real-multiplier FFT algorithms. The proposed algorithmrequires the minimum number of arithmetic operations and uses real multipliers and allowsin-place computation. The simple and regular structure makes it easy to be implemented.

     

/

返回文章
返回