EI / SCOPUS / CSCD 收录

中文核心期刊

声呐测量数据中异常值的辨识方法

A method for identifying outliers in data observed from sonars

  • 摘要: 本文提出一种辨识声呐系统对声源的方位测量数据中异常值的新方法。假定声源短时间内作匀速直线运动。辨识异常值的方法由三步组成:第一步把测量数据按每四个分为一组,采用Robust方法从每组中剔去两点,当数据中包含的异常值数少于50%时,则至少有一组剩下的两点是"好的";第二步,用每组剩下的两点求得方位与其变化率(θ0,θ0)的估计,并用它们分别计算 M-估计的目标函数,使目标函数达极小的那组估计是(θ0,θ0)的"好的"估计;第三步,以此"好的"估计为初值,代人M-估计进行迭代,获得(θ0,θ0)的精确估计,用它所计算的各观测量的残差辨识异常值。该方法的崩溃点为50%,仿真例子验证了所提方法的可靠性。

     

    Abstract: A new method is presented for identifying outliers in the direction-of-arrival (DOA) data of a source observed from a linear array sonar.Suppose a source is making a uniform rectilinear motion.The method for identifying outliers consists of three steps.(1) Divide the data into groups,each with four sample points,and delete certain two sample points from every group by means of the robust method pesented in this paper.When the total number of outliers is less than 50%,there exists at least one group in which the remaining two sample points are'good'.(2) Estimate the DOA and its Change rate,(θ0,θ0),using the remaining two simple points of every group,and compute the objective function of M-esimator using the resulting estimate of every group,respectively.A'good'estimate of (θ0,θ0),that minimizes the objective function is then obtained.(3) Iterate the M-estimaor with the'good'estimate of (θ0,θ0) as the initial value,obtain an accurate estimate of (θ0,θ0),and identify outliers in the observed data using the residuals calculated from the accurate estimate of (θ0,θ0).
    The breakdown point of the method is 50%.The simulation examples given in the paper verify the reliability of the method.

     

/

返回文章
返回