EI / SCOPUS / CSCD 收录

中文核心期刊

湍流喷注噪声定律的发展

DEVELOPMENT OF THE LAW OF TURBULENT JET NOISE

  • 摘要: 本文对流体动力噪声的Lighthill理论进行了讨论,并导出与其U8定律等值的压力定律,即噪声总功率为
    W = 8KD^2 \frac(P _1 - P_0)^4\rho 0c0P_1^2
    K即Lighthill常数,D喷口直径,P1P0分别为气室和大气压力。这个式子适用于低压冷空气喷注。进一步推广,求得高压阻塞喷注的湍流噪声、温度不同、喷注媒质不同也都适用的定律,以90°方向、距离1米处的声压级表示(dB,0dB=20μPa),得
    L = 80 + 10\log \frac(R - 1)^4R^2 - R + 0.5+ 20\log \fracTM_0T_0M + 20\log d
    其中,R=P/P0,d=直径(mm),T,M为工作媒质的温度和分子量而T0,M0为室温及空气分子量。压力定律完全符合实验结果,它更便于在实际中应用。过去作者等提出的经验公式非常接近理论公式。

     

    Abstract: Lighthill's theory of aerodynamic noise is re-examined, and an equivalent of his U8-law derived in terms of pressures. The total acoustic power of jet noise is expressed as
    W = 8KD^2 \frac(P _1 - P_0)^4\rho 0c0P_1^2
    K being the Lighthill's constant, D the diameter of the nozzle, P1 the plenum pressure and P0 the atmospheric pressure. This formula applies to cold-air jet at low pressures. Further development, the formula is generalized to high pressures, working material of molecular weight M at temperature T. Sound pressure level in the direction penpendicular to the jet is seen more exact to describe the field, and this at 1 meter from the nozzle is found as
    L = 80 + 10\log \frac(R - 1)^4R^2 - R + 0.5+ 20\log \fracTM_0T_0M + 20\log d
    where R=P1/ P0 and d=diameter in mm. The general formula reduces to the empirical formulae upon neglecting some small terms.

     

/

返回文章
返回