EI / SCOPUS / CSCD 收录

中文核心期刊

840点素因数分解的DFT算法

A PRIME FACTOR DISCRETE FOURIER TRANSFORM ALGORITHM FOR 840 COMPLEX DATA

  • 摘要: 本文推导了840点素因数分解的离散傅里叶交换的算法。它将840点的DFT运算转变成为素因数3、5、7、8点的DFT运算。文中指出,对于素因数3、7、8点的DFT运算,可以不经过顺序重排而直接引用Winograd的小N的DFT算法。对于素因数为5点的DFT运算,则仅需将5点的Winograd的DFT运算结果按同余式<3k>5,重排顺序。文中还给出了840点素因数分解的DFT算法的框图和BASIC程序清单。最后,文章给出该程序在微型计算机上运行的情况,并指出进一步提高运算速度的几种途径。

     

    Abstract: A prime factor DFT Algorithm for 840 Complex data is presented in this paper. It transforms the operation of the 840points DPT to the operation of the prime factor 3,5,7,8 points DPT. It is pointed out that the Winograd small DFT algorithm can be cited directly for the Short N DFT calculation of the prime factor 3,7,8 without unscrambling. However the only need is reordering the results of the 5 points DPT according to the residue representation <3k>5. The Flowchart and the BASIC Program list of the prime factor DPT algorithm for 840 complex data are given in this paper. At last, the performing of the program by using a 8-bits microcomputer is presented here, and several methods for increasing the calculating rate are then pointed out.

     

/

返回文章
返回