Processing math: 0%

EI / SCOPUS / CSCD 收录

中文核心期刊

极坐标系快速反卷积高分辨声图测量方法

孙大军, 黄天凤, 梅继丹, 崔文婷

孙大军, 黄天凤, 梅继丹, 崔文婷. 极坐标系快速反卷积高分辨声图测量方法[J]. 声学学报, 2024, 49(5): 967-978. DOI: 10.12395/0371-0025.2023080
引用本文: 孙大军, 黄天凤, 梅继丹, 崔文婷. 极坐标系快速反卷积高分辨声图测量方法[J]. 声学学报, 2024, 49(5): 967-978. DOI: 10.12395/0371-0025.2023080
SUN Dajun, HUANG Tianfeng, MEI Jidan, CUI Wenting. A fast algorithm for high-resolution acoustic image measurement using polar coordinate deconvolution[J]. ACTA ACUSTICA, 2024, 49(5): 967-978. DOI: 10.12395/0371-0025.2023080
Citation: SUN Dajun, HUANG Tianfeng, MEI Jidan, CUI Wenting. A fast algorithm for high-resolution acoustic image measurement using polar coordinate deconvolution[J]. ACTA ACUSTICA, 2024, 49(5): 967-978. DOI: 10.12395/0371-0025.2023080
孙大军, 黄天凤, 梅继丹, 崔文婷. 极坐标系快速反卷积高分辨声图测量方法[J]. 声学学报, 2024, 49(5): 967-978. CSTR: 32049.14.11-2065.2023080
引用本文: 孙大军, 黄天凤, 梅继丹, 崔文婷. 极坐标系快速反卷积高分辨声图测量方法[J]. 声学学报, 2024, 49(5): 967-978. CSTR: 32049.14.11-2065.2023080
SUN Dajun, HUANG Tianfeng, MEI Jidan, CUI Wenting. A fast algorithm for high-resolution acoustic image measurement using polar coordinate deconvolution[J]. ACTA ACUSTICA, 2024, 49(5): 967-978. CSTR: 32049.14.11-2065.2023080
Citation: SUN Dajun, HUANG Tianfeng, MEI Jidan, CUI Wenting. A fast algorithm for high-resolution acoustic image measurement using polar coordinate deconvolution[J]. ACTA ACUSTICA, 2024, 49(5): 967-978. CSTR: 32049.14.11-2065.2023080

极坐标系快速反卷积高分辨声图测量方法

基金项目: 国家自然科学基金项目(61801140)资助
详细信息
    通讯作者:

    梅继丹, meijidan@hrbeu.edu.cn

  • 中图分类号: 43.60, 43.58, 43.30

  • PACS: 
    • 43.58  (声学测量与仪器)
    • 43.30  (水声学)
    • 43.60  (声学信号处理)

A fast algorithm for high-resolution acoustic image measurement using polar coordinate deconvolution

  • 摘要:

    二维反卷积声图测量中点扩散函数(PSF)的二维移变性导致算法计算量较大, 为此提出了一种极坐标系下方位、距离分离降维处理的快速反卷积声图测量方法。该方法将二维移变反卷积运算转换为两次一维反卷积运算, 同时利用方位维反卷积具有近似一维空域移不变特点, 采用移不变模型进行计算, 仅对距离维进行一维移变反卷积运算, 从而减少算法的PSF存储空间和计算量。仿真和实验数据处理结果表明, 所提方法显著降低了计算量, 且与原二维移变模型反卷积声图测量方法的性能相近。

    Abstract:

    For the huge computational complexity caused by the two-dimensional shift-variant specialty of point spread function (PSF) in two-dimensional deconvoluted acoustic image measurement, this paper proposes a fast algorithm of acoustic image measurement using polar coordinate deconvolution that separates azimuth and distance domain to make a dimension-reduced processing. The proposed method converts the two-dimensional shift-variant deconvolution into two one-dimensional deconvolutions, and utilizes the approximate spatial shift-invariant characteristic of the one-dimensional deconvolution in the azimuth domain at the same time. By selecting the shift-invariant model to realize the deconvolution here, only the shift-variant deconvolution is conducted in the distance domain, thereby reducing the PSF storage space and computational complexity. The results of simulation and experimental data processing show that the proposed method significantly reduces the computational complexity with the similar performance compared to the original two-dimensional shift-variant deconvolution algorithm.

  • 图  1   极坐标系下聚焦波束形成声图测量示意图

    图  2   指向不同角度的声图PSF结果 (a) {\boldsymbol R}(\left. {r,\theta } \right|80{\text{ m}},{90{\text{°}} }); (b) {\boldsymbol R}(\left. {r,\theta } \right|80{\text{ m}},{\text{8}}{{\text{0}}{\text{°}} })

    图  3   指向不同角度的声图PSF切片结果对比(r = 80{\text{ m}}) (a) 不同角度目标PSF的方位维切片; (b) 方位切片平移对齐结果

    图  4   不同距离时声图PSF及方位维PSF束宽对比 (a) {\boldsymbol R}(\left. {r,\theta } \right|80{\text{m}},{90{\text{°}} }); (b) {\boldsymbol R}(\left. {r,\theta } \right|{\text{10}}0{\text{m}},{90{\text{°}} }); (c) {\boldsymbol R}(\left. {r,\theta } \right|{\text{12}}0{\text{m}},{90{\text{°}} }); (d) 声源位于不同距离时方位维PSF

    图  5   相同方位不同距离及不同方位相同距离的目标PSF对比 (a) 距离维PSF {\boldsymbol R}(\left. {r,\theta } \right|{\text{6}}0{\text{m}},{90{\text{°}} }); (b) 距离维PSF {\boldsymbol R}(\left. {r,\theta } \right|{\text{10}}0{\text{m}},{90{\text{°}} }); (c) r = 100{\text{ m}}时不同方位距离维PSF切片; (d) 距离维PSF

    图  6   极坐标方位维及距离维PSF (a) 方位维PSF曲线; (b) 距离维PSF字典

    图  7   单目标极坐标系近场声图测量结果 (a) CBF声图; (b) MVDR声图; (c) dCv声图; (d) 距离维剖面对比; (e) 方位维剖面对比

    图  8   双目标极坐标系近场声图测量结果 (a) CBF声图; (b) MVDR声图; (c) dCv声图; (d) 距离维剖面对比; (e) 方位维剖面对比

    图  9   极限双目标极坐标系声图测量结果 (a) CBF声图; (b) MVDR声图; (c) dCv声图; (d) 距离维剖面对比; (e) 方位维剖面对比

    图  10   双目标极坐标系声图测量结果 (a) CBF声图; (b) MVDR声图; (c) dCv声图; (d) 距离维剖面对比; (e) 方位维剖面对比

    图  11   两种坐标系下dCv聚焦结果 (a) 直角坐标系; (b) 极坐标系

    图  12   不同阵元数的距离维及方位维声图测量尺度对比曲线 (a) 距离维−3 dB聚焦峰尺度; (b)方位维−3 dB聚焦峰宽度

    图  13   两种坐标系下迭代次数与计算时间关系

    图  14   单目标极坐标系下的声图 (a) CBF声图; (b) MVDR声图; (c) dCv声图

    图  15   单目标极坐标系下声图的距离维及方位维剖面对比 (a) 距离维剖面; (b) 方位维剖面

    图  16   双目标极坐标系下的声图 (a) CBF声图; (b) MVDR声图; (c) dCv声图

    图  17   单目标声图 (a) 快速反卷积; (b)直角坐标反卷积

    图  18   双目标声图 (a) 快速反卷积 (b)直角坐标反卷积

    表  1   本文方法求解过程

    (1) 输入 接收信号{{\boldsymbol{x}}}, 声源信号方向向量{{\boldsymbol{A}}}\left( {r,\theta } \right), 扫描区域起止点\theta ',\theta '',r',r'';
    阵元数: M; 迭代次数: {\alpha _{\max }}, 终止门限: e; 常规聚焦波束形成输出: {\boldsymbol P}\left( {r,\theta } \right);
    方位维PSF函数: {{\boldsymbol R}_{{r_i}}}\left( {\cos \theta - \cos \vartheta } \right);
    距离维PSF矩阵: {{\boldsymbol R}_{\cos {\theta _j}}}\left( {r\left| \zeta \right.} \right)
    (2) 初始化 {\boldsymbol S}_{{r_i}}^{\left( 0 \right)}\left( {\cos \vartheta } \right) = {{\boldsymbol P}_{{r_i}}}\left( {\cos \vartheta } \right), {\boldsymbol S}_{\cos {\theta _j}}^{\left( 0 \right)}\left( \zeta \right) = {{\boldsymbol P}_{\cos {\theta _j}}}\left( \zeta \right)
    (3) 循环 方位维:
    1) 由式(3)得到{\boldsymbol P}\left( {r,\theta } \right);
    2) 取{\boldsymbol P}\left( {r,\theta } \right)的第i行, 记为{{\boldsymbol P}_{{r_i}}}\left( {\cos \theta } \right);
    3) 代入式(10), 逐次迭代, 得到{\boldsymbol S}_{{r_i}}^{\left( {\alpha + 1} \right)}\left( {\cos \vartheta } \right);
    距离维:
    1) 由式(3)得到{\boldsymbol P}\left( {r,\theta } \right);
    2) 取{\boldsymbol P}\left( {r,\theta } \right)的第j列, 记为{{\boldsymbol P}_{\cos {\theta _j}}}\left( r \right);
    3) 代入式(14), 逐次迭代, 得到{\boldsymbol S}_{\cos {\theta _j}}^{\left( {\alpha + 1} \right)}\left( \zeta \right)
    终止条件 如果\alpha \lt {\alpha _{\max }}, 令\alpha = \alpha + 1, 返回步骤(3);
    \big\| {{\boldsymbol S}_{{r_i}}^{\left( {\alpha + 1} \right)}\left( {\cos \vartheta } \right) - {\boldsymbol S}_{{r_i}}^{\left( \alpha \right)}\left( {\cos \vartheta } \right)} \big\| + \big\| {{\boldsymbol S}_{\cos {\theta _j}}^{\left( {\alpha + 1} \right)}\left( \zeta \right) - {\boldsymbol S}_{\cos {\theta _j}}^{\left( \alpha \right)}\left( \zeta \right)} \big\| < e, 迭代终止。
    (4) 输出 1) {\boldsymbol S}_{{r_i}}^{\left( {\alpha + 1} \right)}\left( {\cos \vartheta } \right)为方位维反卷积输出;
    2) {\boldsymbol S}_{\cos {\theta _j}}^{\left( {\alpha + 1} \right)}\left( \zeta \right)为距离维反卷积输出;
    将 1) 与 2) 的结果代入式(15)得到极坐标系下二维反卷积输出。
    下载: 导出CSV
  • [1] 惠娟, 胡丹, 惠俊英, 等. 聚焦波束形成声图测量原理研究. 声学学报, 2007; 32(4): 356−361 DOI: 10.15949/j.cnki.0371-0025.2007.04.012
    [2]

    Brooks T F, Humphreys W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays. J. Sound Vib., 2006; 294(4): 856−879 DOI: 10.1016/j.jsv.2005.12.046

    [3] 时洁, 杨德森, 时胜国, 等. 基于压缩感知的矢量阵聚焦定位方法. 物理学报, 2016; 65(2): 194−204 DOI: 10.7498/aps.65.024302
    [4] 贾艳云, 陈宏宇. 基于矢量水听器的MVDR水下近场噪声与定位方法研究. 声学与电子工程, 2016; 122(2): 1−5
    [5] 熊鑫, 章新华, 卢海杰, 等. 二维MUSIC近场被动定位方法. 声学技术, 2010; 29(5): 543−547 DOI: 10.3969/j.issn1000-3630.2010.05.019
    [6] 陈新华, 郑恩明, 李嶷, 等. 复域压缩感知近场声图测量方法. 兵工学报, 2021; 42(8): 1735−1743 DOI: 10.3969/j.issn.1000-1093.2021.08.018
    [7]

    Yang T C. Deconvolved conventional beamforming for a horizontal line array. IEEE J. Oceanic Eng., 2018; 43(1): 160−172 DOI: 10.1109/JOE.2017.2680818

    [8]

    Yang T C. Performance analysis of super directivity of circular arrays and implications for sonar systems. IEEE J. Oceanic Eng., 2018; 44(1): 156−166 DOI: 10.1109/JOE.2018.2801144

    [9] 徐亮, 胡鹏, 张永斌, 等. 可用于相干声源的快速反卷积声源成像算法. 机械工程学报, 2018; 54(23): 82−92 DOI: 10.3901/JME.2018.23.082
    [10]

    Chu N, Zhao H, Yu L, et al. Fast and high-resolution acoustic beamforming: A convolution accelerated deconvolution implementation. IEEE Trans. Instrum. Meas., 2020; 70(1): 1−15 DOI: 10.1109/TIM.2020.3043869

    [11] 王朋, 迟骋, 纪永强, 等. 二维解卷积波束形成水下高分辨三维声成像. 声学学报, 2019; 44(4): 613−625 DOI: 10.15949/j.cnki.0371-0025.2019.04.022
    [12] 商志刚, 曲星昊, 乔钢, 等. 远近场混合源的波束解卷积定位. 声学学报, 2023; 48(3): 447−458 DOI: 10.15949/j.cnki.0371-0025.2023.03.014
    [13] 梅继丹, 石文佩, 马超, 等. 近场反卷积聚焦波束形成声图测量. 声学学报, 2020; 45(1): 15−28 DOI: 10.15949/j.cnki.0371-0025.2020.01.002
    [14] 贺欢, 王逸飞. 基于图像复原处理的近场MVDR声图测量方法. 探测与控制学报, 2022; 44(4): 35−40 DOI: 10.11812/j.issn.1008-1194.2022.4.tcykzxb202204007
    [15]

    Sun D, Ma C, Mei J, et al. Improving the resolution of underwater acoustic image measurement by deconvolution. Appl. Acoust., 2020; 165(1): 107292 DOI: 10.1016/j.apacoust.2020.107292

    [16]

    Ehrenfrid K, Koop L. Comparison of iterative deconvolution algorithms for mapping of acoustic sources. AIAA J., 2007; 45(7): 1−19 DOI: 10.2514/1.26320

图(18)  /  表(1)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  11
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-23
  • 修回日期:  2023-12-10
  • 刊出日期:  2024-09-02

目录

    /

    返回文章
    返回