EI / SCOPUS / CSCD 收录

中文核心期刊

分散式速度反馈控制流激薄板声振响应的模态解及特性

韦大朋, 刘好胜, 刘碧龙

韦大朋, 刘好胜, 刘碧龙. 分散式速度反馈控制流激薄板声振响应的模态解及特性[J]. 声学学报, 2024, 49(2): 336-343. DOI: 10.12395/0371-0025.2022172
引用本文: 韦大朋, 刘好胜, 刘碧龙. 分散式速度反馈控制流激薄板声振响应的模态解及特性[J]. 声学学报, 2024, 49(2): 336-343. DOI: 10.12395/0371-0025.2022172
WEI Dapeng, LIU Haosheng, LIU Bilong. Modal solution and characteristics of decentralized velocity feedback controlled flow-excited thin plate acoustic vibration response[J]. ACTA ACUSTICA, 2024, 49(2): 336-343. DOI: 10.12395/0371-0025.2022172
Citation: WEI Dapeng, LIU Haosheng, LIU Bilong. Modal solution and characteristics of decentralized velocity feedback controlled flow-excited thin plate acoustic vibration response[J]. ACTA ACUSTICA, 2024, 49(2): 336-343. DOI: 10.12395/0371-0025.2022172

分散式速度反馈控制流激薄板声振响应的模态解及特性

基金项目: 国家自然科学基金项目(11874034)资助
详细信息
    通讯作者:

    刘碧龙, liubilong@qut.edu.cn

  • 中图分类号: 43.40, 43.50, 43.28

  • PACS: 

Modal solution and characteristics of decentralized velocity feedback controlled flow-excited thin plate acoustic vibration response

  • 摘要:

    采用模态展开法推导了湍流边界层和分散式速度反馈控制共同作用下薄板的响应和声辐射, 给出了与分散式速度反馈控制增益系数、单元位置、数量和大小相关的模态阻尼的显示表达式。给定激励和参数的条件下, 通过与元素法的计算结果进行对比, 验证了模态展开法具有较高的计算效率和准确性。讨论了分散式速度反馈控制单元的布置方式和数量对模态阻尼的影响, 以及反馈控制单元的布置方式对薄板动能、辐射声功率和模态平均辐射系数的影响。数值分析结果表明反馈控制单元的数量和布放位置对控制效果影响显著, 反馈控制单元沿螺旋线布置能明显拓宽控制频带; 两种反馈控制单元布置方式, 在动能和辐射声功率控制较好的共振频率处, 除第一阶模态外, 模态平均声辐射效率随反馈增益的增大明显提高。

    Abstract:

    The response and acoustic radiation of a turbulent boundary layer (TBL) induced thin plate under decentralized velocity feedback control are derived using the modal expansion method, in which an explicit expression for the modal damping related to the gain coefficient, unit location, number and size of the decentralized velocity feedback control is given. For the given excitation and parameters, the current approach was verified to have much higher computational efficiency in comparison with that of the finite unit method. The effects of the arrangement and number of decentralized velocity feedback control units on the modal damping, and the effects of the arrangement of the feedback control units on the kinetic energy and radiated sound power of the thin plate are discussed. The numerical analysis results show that the number and location of feedback control units have a significant effect on the control effect, and the arrangement of feedback control units along the helix can significantly broaden the control band, the average modal radiation efficiency of the two feedback control units increases with the increase of feedback gain except for the first mode at the resonant frequencies with better kinetic energy and radiated sound power control.

  • 图  1   TBL激励下板振动的分散反馈控制

    图  2   反馈控制单元均匀布置

    图  3   两种模型计算结果对比 (a) 板的动能; (b) 辐射声功率

    图  4   反馈控制单元的布置位置 (a) 均匀布置; (b) 螺旋线布置

    图  5   模态阻尼系数随模态的变化 (a) 均匀布置; (b) 沿螺旋线布置

    图  6   反馈控制单元的数量对模态阻尼的影响 (a) 控制单元数量9个; (b) 控制单元数量4个

    图  7   反馈控制单元均匀和螺旋线排布时 (a)板的动能和(b)辐射声功率

    图  8   模态平均声辐射效率 (a) 均匀布置; (b) 螺旋线布置

    表  1   反馈控制单元中心点的位置坐标

    12345678
    x (m)0.28350.31650.30510.24110.19740.24490.34750.3821
    y (m)0.22120.24360.29480.30660.24230.16520.17820.2891
    910111213141516
    x (m)0.28620.15590.15130.30110.44230.39730.19550.0651
    y (m)0.37550.31970.16510.09010.20230.39010.43130.2556
    下载: 导出CSV
  • [1]

    Bhat W V. Flight test measurement of exterior turbulent boundary layer pressure fluctuations on Boeing model 737 airplane. J. Sound Vib., 1971; 14(4): 439−457 DOI: 10.1016/0022-460X(71)90574-8

    [2] 汤渭霖. 湍流边界层压力起伏激励下弹性板的噪声辐射. 声学学报, 1991; 16(5): 352−364 DOI: 10.15949/j.cnki.0371-0025.1991.05.005
    [3] 徐嘉启, 周振龙, 梅志远. 湍流激励下柔性层贴敷加筋板自噪声的特征机理. 声学学报, 2021; 46(1): 143−160 DOI: 10.15949/j.cnki.0371-0025.2021.01.015
    [4]

    Graham W R. Boundary layer induced noise in aircraft, Part I: the flat plate model. J. Sound Vib., 1996; 192(1): 101−120 DOI: 10.1006/jsvi.1996.0178

    [5]

    Graham W R. Boundary layer induced noise in aircraft, Part II: the trimmed flat plate model. J. Sound Vib., 1996; 192(1): 121−138 DOI: 10.1006/jsvi.1996.0179

    [6]

    Liu B L. Noise radiation of aircraft panels subjected to boundary layer pressure fluctuations. J. Sound Vib., 2008; 314(3-5): 693−711 DOI: 10.1016/j.jsv.2008.01.045

    [7]

    Liu B L, Feng L P, Nilsson A C, et al. Predicted and measured plate velocities induced by turbulent boundary layers. J. Sound Vib., 2012; 331(24): 5309−5325 DOI: 10.1016/j.jsv.2012.07.012

    [8]

    Liu B L, Li X. Noise transmission and absorption of lightweight structures: an overview and experience. Distinguished Plenary Lecture, ICSV26, Montreal, 2019

    [9]

    Kou Y W, Liu B L, Tian J. Radiation efficiency of damped plates. J. Acoust Soc. Am., 2015; 137(2): 1032−1035 DOI: 10.1121/1.4906186

    [10]

    Kou Y W, Liu B L, Chang D Q. Radiation efficiency of plates subjected to turbulent boundary layer fluctuations. J. Acoust. Soc. Am., 2016; 139(5): 2766−2771 DOI: 10.1121/1.4949021

    [11]

    Cremer L, Heckl M. Structure-borne sound: Structural vibrations and sound radiation at audio frequencies. Springer Berlin, Heidelberg, 2013

    [12]

    Leppington F G, Broadbent E G, Heron K H. The acoustic radiation efficiency of rectangular panels. Proc. R. Soc. Lond. A, 1982; 382: 245−271 DOI: 10.1098/rspa.1982.0100

    [13]

    Gardonio P, Elliott S J. Smart plates for active structural acoustic control. Smart Mater Struct., 2004; 13(6): 1314 DOI: 10.1088/0964-1726/13/6/005

    [14] 曹寅. 结构声的分散式主动控制理论和实验研究. 博士学位论文, 北京: 中国科学院大学, 2013
    [15] 姚慧珠, 孙庆鸿. 压电陶瓷在结构振动及声辐射有源控制中的新应用. 南京化工大学学报, 1995(2): 108−112
    [16]

    Elliott S J, Gardonio P, Sors T C, et al. Active vibroacoustic control with multiple local feedback loops. J. Acoust. Soc. Am., 2002; 111(2): 720−731 DOI: 10.1121/1.1433810

    [17]

    Jayachandran V, Sun J Q. Unconditional stability domains of structural control systems using dual actuator-sensor pairs. J. Sound Vib., 1997; 208(1): 159−166 DOI: 10.1006/jsvi.1997.1177

    [18]

    Cao Y, Sun H L, An F Y, et al. Virtual absorbed energy in decentralized velocity feedback control of a plate with piezoelectric patch actuators. Appl. Acoust., 2013; 74(6): 909−919 DOI: 10.1016/j.apacoust.2013.01.001

    [19] 曹寅, 孙红灵, 李晓东. 板振动的无需次级通道建模的分散式前馈控制方法研究. 振动与冲击, 2014; 33(3): 98−104 DOI: DOI:10.3969/j.issn.1000-3835.2014.03.020
    [20]

    Gardonio P, Bianchi E, Elliott S J. Smart plate with multiple decentralized units for the control of sound transmission, Part I: theoretical predictions. J. Sound Vib., 2003; 274(1-2): 163−192 DOI: 10.1016/j.jsv.2003.05.004

    [21]

    Gardonio P, Bianchi E, Elliott S J. Smart plate with multiple decentralized units for the control of sound transmission, Part II: design of the decentralized control units. J. Sound Vib., 2003; 274(1-2): 193−213 DOI: 10.1016/j.jsv.2003.05.007

    [22]

    Bianchi E, Gardonio P, Elliott S J. Smart plate with multiple decentralized units for the control of sound transmission, Part III: control system implementation. J. Sound Vib., 2003; 274(1-2): 215−232 DOI: 10.1016/j.jsv.2003.05.006

    [23]

    Rohlfing J, Gardonio P. Homogeneous and sandwich active plates under deterministic and stochastic excitation. J. Acoust. Soc. Am., 2009; 125(6): 3696−3706 DOI: 10.1121/1.3123405

    [24]

    Clark R L, Fuller C R, Wicks A L. Characterization of multiple piezoelectric actuators for structural excitation. J. Acoust. Soc. Am., 1991; 90(1): 346−357 DOI: 10.1121/1.401257

    [25] 寇毅伟. 包含气动载荷影响的飞机壁板结构声振特性研究. 博士学位论文, 北京: 中国科学院声学研究所, 2016: 22−23
    [26]

    Chang D Q, Liu B L. The modal coupling effect on the noise radiation of beams under different excitations. Noise Control Eng. J., 2017; 65(4): 336−344 DOI: 10.3397/1/376549

    [27]

    Wu C J. Wave propagation approach for structural vibration. Springer Singapore, 2021

    [28]

    Corcos G M. Resolution of pressure in turbulence. J. Acoust. Soc. Am., 1963; 35(2): 192−199 DOI: 10.1121/1.1918431

    [29]

    Finnveden S, Birgersson F, Ross U, et al. A model of wall pressure correlation for prediction of turbulence-induced vibration. J. Fluid Struct., 2005; 20: 1127−1143 DOI: 10.1016/j.jfluidstructs.2005.05.012

    [30]

    Nilsson A C, Liu B L. Vibro-Acoustics, Volume 2. Springer Berlin, Heidelberg, 2016

图(8)  /  表(1)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  12
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-13
  • 修回日期:  2023-03-06
  • 刊出日期:  2024-03-04

目录

    /

    返回文章
    返回