低复杂度的盲源分离和去混响联合优化方法
A low-complexity joint optimization of blind source separation and dereverberation
-
摘要: 提出了一种低复杂度的基于加权预测误差(WPE)的独立低秩矩阵分析(ILRMA)方法。与现有的WPE-ILRMA方法把预测矩阵当成一个整体来处理不同, 所提方法将预测矩阵展开来推导代价函数, 利用不同声源的混合滤波器和分离滤波器之间的正交性简化代价函数的优化过程, 进而以更低的计算复杂度对混合信号去混响。通过利用解耦预测矩阵和分离滤波器之间的关系, 所提方法将维数较大的矩阵求逆转化为维数较小的矩阵求逆, 从而取得了比WPE-ILMRA方法更低的计算复杂度。在最大似然框架下推导了所提方法的代价函数, 并采用坐标梯度下降算法来估计参数。实验结果表明, 所提方法能以更低的计算复杂度和更高的稳定性取得与WPE-ILRMA方法相似的分离性能。Abstract: This paper proposes a low-complexity weighted-prediction-error (WPE) based independent low-rank matrix analysis (ILRMA). Instead of taking the prediction matrix as a whole in WPE-ILRMA, the prediction matrix is expanded to derive the cost function. The minimization of the cost function is simplified using the orthogonality between the mixing filter and demixing filter of different sources, which enables to dereverberate the observed signals with a low complexity. Therefore, the proposed method requires a smaller dimension matrix inverse by exploiting the relationship between the prediction matrix and demixing filter, and has a lower computational complexity than WPE-ILMRA. The cost function is formulated using the maximum log-likelihood criterion, which is then minimized using the coordinate descent method. Experimental results show that the proposed method can achieve a similar separation performance as WPE-ILRMA with lower computational complexity and higher stability.