EI / SCOPUS / CSCD 收录

中文核心期刊

结合相干差频信号与卷积神经网络的水下声源定位方法

Underwater source localization combining coherent frequency-difference signal with convolutional neural network

  • 摘要: 匹配场处理在高失配、高频率的定位场景中定位性能大幅下降。为此, 在非相干差频声源定位技术和利用数据驱动的机器学习定位方法的基础上, 提出了一种基于相干差频信号互谱密度矩阵的卷积神经网络定位方法。该方法使用模型和数据双驱动对失配、含噪等场景下的中高频水下声源进行定位。对于差频信号, 该方法在中心频率维度上对差频信号进行非相干平均以减小交叉项的影响, 并在差频频率维度上进行堆叠以保留不同频率之间的相关信息, 将得到的张量数据作为卷积神经网络的输入定位水下声源。使用SwellEx-96仿真环境和2021年南海声层析长距离试验的海试数据分别进行了试验, 结果表明, 所提定位算法适用于含噪、存在失配的海洋环境中的中高频声源定位, 对水下声源定位具有较好的宽容性。

     

    Abstract: The localization performance of matched-field processing decreases substantially for high-mismatch and high-frequency localization scenarios. Based on incoherent frequency-difference source localization technique and data-driven machine learning localization method, this paper proposes a convolutional neural network localization method based on the cross-spectral density matrix of coherent frequency-difference signal. This method utilizes dual-driven modeling and data to localize mid- and high-frequency underwater sources in mismatched and noisy scenarios. For frequency-difference signal, this method performs incoherent averaging along the central frequency dimension to reduce the impact of cross-term, and stacks along the frequency-difference dimension to preserve the correlation information between different frequencies. The resulting tensor data is then used as input to a convolutional neural network for underwater source localization. This paper conducts experiments using the SwellEx-96 simulation environment and sea trial data from the 2021 South China Sea Acoustic Tomography Long-Range Experiment. The experiments show that the proposed localization algorithm is suitable for localizing medium and high frequency sources in the noise-containing and mismatch-existing marine environment, showing favorable tolerance for underwater source localization.

     

/

返回文章
返回