EI / SCOPUS / CSCD 收录

中文核心期刊

采用球面波叠加法还原自由声场的方法

Recovery of the free field in a noisy environment by using the spherical wave superposition method

  • 摘要: 为解决非自由声场中近场声全息重建时,干扰声在目标声源表面产生的散射影响,提出一种基于球面波叠加法的自由场还原技术。该技术首先采用基于球面波叠加法的声场分离技术获得向内和向外传播的声场,然后以目标声源的表面导纳作为边界条件,实现目标声源辐射声和散射声的分离,从而获得等效于自由声场的测量条件。该技术为准确实现非自由声场中的噪声源识别创造了条件。文中首先详细描述了该技术的基本原理,并提出一种最优球面波展开项数选取方法,最后通过数值仿真说明了该技术的有效性。结果表明:在频率较低时,散射声影响较小,采用声场分离技术和自由场还原技术效果相当;但随着频率升高,散射声影响逐步增强,必须采用自由场还原技术才能准确获得目标声源辐射声。

     

    Abstract: To remove the scattering effect of the disturbing sound on the target source when implementing nearfield acoustic holography in a non-free field, a free field recovery technique based on the spherical wave superposition method is proposed. In the method, the sound field separation technique based on the spherical wave superposition method is first used to separate the incoming and outgoing fields, and a further step for separating the radiated and scattered fields is performed by utilizing the surface admittance of the target source as the boundary condition. The technique makes it possible to correctly identify noise sources in a non-free sound field. The basic principle of the technique is described firstly, a method for choosing the number of optimal spherical wave expansion terms is given, and two numerical simulations are used to demonstrate the validity of this technique. It is shown that, for the lower frequency, the scattering effect can be neglected, and the radiated field of the target source can be obtained by the sound field separation technique, however, as the increasing of the frequency, the scattering effect cannot be neglected, and the free field recovery technique has to be used to obtain the radiated field of the target source.

     

/

返回文章
返回